Streckenatragen oder das Axiom vom Lineal: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (Die Seite wurde neu angelegt: == Fehlt noch was?== Wir wissen nun, dass eine Strecke <math>\overline{AB}</math> die Menge aller Punkte, die zwischen <math>\ A</math> und <math>\ B</math> liegen vere...) |
*m.g.* (Diskussion | Beiträge) (→Definition III.1: (Mittelpunkt einer Strecke)) |
||
(6 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | == | + | == Der Mittelpunkt einer Strecke== |
− | Wir wissen nun, dass eine Strecke <math>\overline{AB}</math> die Menge aller Punkte, die zwischen <math>\ A</math> und <math>\ B</math> liegen | + | Wir wissen nun, dass eine offene Strecke <math>\overline{AB}</math> die Menge aller Punkte ist, die zwischen <math>\ A</math> und <math>\ B</math> liegen. Vereinigt man diese Menge mit der Menge der beiden Endpunkte <math>\ A</math> und <math>\ B</math>, so hat man die gesamte Strecke <math>\overline{AB}</math>. Zu unseren grundlegenden Vorstellungen von Strecken gehört, dass jede Strecke <math>\overline{AB}</math> einen Mittelpunkt <math>\ M</math> hat. <math>\ M</math> wäre der Punkt auf <math>\overline{AB}</math>, der sowohl zu <math>\ A</math> als auch zu <math>\ B</math> denselben Abstand <math>\frac{| \overline{AB} |}{2}</math> hat. |
+ | |||
+ | ===== Definition III.1: (Mittelpunkt einer Strecke) ===== | ||
+ | ::Wenn der Punkt <math>\ M</math> der Strecke <math>\overline{AB}</math> zu den Endpunkten <math>\ A</math> und <math>\ B</math> ein und denselben Abstand hat, so heißt er Mittelpunkt der Strecke <math>\overline{AB}</math>. |
Aktuelle Version vom 31. Mai 2010, 10:54 Uhr
Der Mittelpunkt einer Strecke
Wir wissen nun, dass eine offene Strecke die Menge aller Punkte ist, die zwischen und liegen. Vereinigt man diese Menge mit der Menge der beiden Endpunkte und , so hat man die gesamte Strecke . Zu unseren grundlegenden Vorstellungen von Strecken gehört, dass jede Strecke einen Mittelpunkt hat. wäre der Punkt auf , der sowohl zu als auch zu denselben Abstand hat.
Definition III.1: (Mittelpunkt einer Strecke)
- Wenn der Punkt der Strecke zu den Endpunkten und ein und denselben Abstand hat, so heißt er Mittelpunkt der Strecke .