Lösung von Zusatzaufgabe 10.1P (SoSe 12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
 
(3 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
  
  
1. links, 2. rechts:
+
1. links, 2. rechts (die schwarzen "urspünglichen" dreiecke können bewegt werden):
<ggb_applet width="1822" height="802"  version="4.0" ggbBase64="UEsDBBQACAAIAGFK5UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAGFK5UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5V3ZcuM2Fn1OvgKlhzxFNPYlsZNqO0t3Wu7uxD1TU/OSoiRaZlsSFZHeUvn4uSBIiqQWS7ItU5o4booiQADnbgeXBHz84/1oiG6DaRxG45MW8XALBeNe1A/Hg5PWTXLZ1q0ff/j6eBBEg6A79dFlNB35yUmL25Jh/6TVZ5f+5aXEbeMT3eaXPmt3hSLtfj8IRFcJ+O21ELqPw+/G0Qd/FMQTvxdc9K6Ckd+Jen6SNnyVJJPvjo7u7u68vCkvmg6OBoOudx/3Wwi6OY5PWtmH7+B2lUp3LC1OMSZH/znvuNu3w3Gc+ONe0EJ2CDfhD19/dXwXjvvRHboL+8kVDJjRFroKwsEVjInpFjqyZSaAxyToJeFtEEPN0mk65GQ0aaXF/LG9/pX7hIbFaFqoH96G/WB60sIeFS0UTcNgnGRXSdbKUV7/+DYM7tyN7Ke0Dd5CSRQNu769B/rnH0QxxehbeyDuQOEgpbuE3XeYuQN1B+4OwpXhrjp3Rbkrw10ZzlroNozD7jA4aV36wxggC8eXUxBXcR4nD8Mg7U/2xWy85FsYUxz+DYUZBr1wGMP3GH9rfyX8cnvhqDpIUmo1md5s2GjeJNGUrt8mfdJIWd4oF3K+TSqWjFOuaNQNfK2BihK20FT6f/o71yJbNcx6i+78aQ1KvpMhHh/ltnKcmQeKr2zZTH2SYBRbg2EGCWP1niABxiEVqLlAxMBBUQTmgIhAXMAp0Ujao0JMwQWOGNLIliMMpdYhNPzDVXoziQTczH6rwCgRgYY4EgyR1Kg4AlNCqWGCkVIGJYRAAirZ5gm1t2AScQlnTCMOfbQ2qQgUZFARzqF5ihhBzFYmClGJpL0f4dbWpbZdh1tSJDGSxN4QzBpM2pkzlNeI2dHIDK5wPLlJKhD1Rv38YxJNCllAaXBIM0fnHFTFD351PPS7wRAiw4WVJEK3/tBaRNrQZTROUC5E6r4bTP3JVdiLL4IkgVox+uLf+h0/Ce5/gdJx3nZatheN40/TKDmLhjejcYxQLxrios/RkJQ+06LXcMJKF3j5gihdkKXPamG7EVxBN3EA7UfTOC/u9/vvbImZawAkP46HD6fTwL+eRGF1GMdHaZA5Dm56w7Af+uN/g7LaViwuqIg5qb/Kg47GJO9JNO1fPMSgwuj+v8E0Omkp5mEy+wEreXAXqDIe1ZxL434U9KznW9Oj1KOyqIKNAU14WHINbDZtObgtJOTfB7PBDqZhoSv287v4NBr2i8vp8M/8SXIzTdkC+MapHdOb8WAYpCqSGjaE4t51N7q/cLrB3L0+P0zgDLsOdAcp7AhcAxUQLgfZseuOaRnbs6IUTsvgtATOlS3sF9eJoWmJ9Nh1x7QUaK/rWjZSko+S4LyZME4dGm5lZpM7K6v7NrTfjMOkk58kYe96NlRb4cPNqBsUGlS9J3muex4f1VTs+DqYjoNhptEgy5voJnYGWlL2ftALR3DqLmSQ+FZc/4IOuG/7wWAa5B0fpkzMAZZexWVdnfs6vdUv02j0bnz7GXSh1oHjo7yXx3FvGk6syqEuRIHrYKZV/TD2IYj0y/WsCcLQezZYADyJhQaM8ya5iqYp2wKfAkdrecNgBEwLJal6pRpawPwmJW0WTxR1v4Bbq8thJjG4XuiSIKkq2UPXHfzh5Mq31C4b9tB/CKYVINIbnkf9OjyAfjoGMPKJk+4kCJxiuB7DhwncLrWnipcCvGN07xpFDxn//tsxdsdZ7VitjVXcsvu2JijQHgfTI4CdHhJgeAeAnR0CYPKZAetFo5E/7qNxSgU/RcOHQTRuzciJj61pIp9YhUM+tTA6iG6S/Do4uSFEEeKK9VwxHw4Q/buuwayZBRJyDeYiKG5VDQcJEJVrmI7F6QwhyaJT+uFtCHPZlKQezYk3o87u1iU41xQv2US8y7UwDgb2rOhIb14Pn9jRDfVwpk28pk2zW20BffDX2FWJXXgMR5Nh2AuTQl+GVq/fjRMIlkEaLeZj4HUQTCz5+Dj+PPXHsc1nuDKl2LomzH5zYM69nDxAmLvNgbmdq3M7B5ryPUa6Gr1+OoToReqW8JLx/ueDQqz9XJBVI34H7KIW7n9ycfznuTjfXx3LrYkV2Pab4xYIrUW5NqEv5oHXVc5fHlPOFwfoObSzcLi7mPD8ehD2nCsj3ZU5/+LM+dc5cw42MOegOebczqdAOkNQyF0YcxXn83A6jaaL50n9OaTffONPovj7x6ZClXRIVuWVVX4GOy3lNir/kRdQ44Xwni6D93RzeE8bCy/xKOWSS2UM4YoJxn5uE7ErjM+WYXy2OcZnTcOY8EKFtdFCK2Kk0IYTC7HcXTolw8UlVYoTWgF5YYKlXLFXrugXJzblsp6oFideSjLbZfolf6Cwk/zLMr3caX/Lisk8U/1PVvmqMrUCezunnUvSNE4WymNcaY2V4VpzQp1rKE/A2guKiIORSLdxEinSOrJE+KoMZH/AX4dGlt18UPSkdnlrStm4qCy9zMKMR0jZy6mdMcvViJ9ui/hpQxGnnn0D6SHNLlFWhlzvjGiuhvxsW8jPGgo59uw7WCn35Koay3fMOxewzwUcdC0m6v79k1QY6QJeuoCdPp2jFo3/H3DV5sVk4hFaywJYjsQ8zV2MZjVnvkcxei3K2jiRCE9lRJV4supiXCBtg0yU3FPetBZpbZxMgLpKVvP2D1ZUgubPJyvXtdwjkayfEV1KYv8kWxDYzOU3Ja4LMS/gtn1stzMudfoIcd0M5dPmoSw95fhqW3vmJRJ1q3KhS8npZrCeNQ9W7fE8atNds9CcNJ6WTmkN2hXMs8Y58+p+6XTGNR8X1CqeuUuGmb9fvcu30Zbr5U57XGeXFfJoaEEv6+HUEhsqPV1hPIeTjvObKB5R5ZEZ+QfaqSt5OZnPBKqlD0c43QYKB0xBZy8YkAozySZmbYGhREkcc2svGiyO9bOneYCYf5L5dpOo/bY50dp4nJfNiL0G03wM3HebgPuuOeASoEAV50VegW8+Bu5vm4D7W4PAhciwe6L51sH4zjHD39ZKZboqX1yVK0ciw6cnKQ+aQH5pUPBbRhzrvNE5TG48WqaNao8i4WqZXDVJJovZYrtOF7OXnCSBOHcwgggbJIiCGbbr1FC6GNfW0lOkYiZ7JIf7yRQ6Zt/OzbD9HNwnABxcOGl989dNlHz/5vTMfUgrVyWXQOlWtepWoqsuft46esaJP00+2TiI0hDqYUaVFhg0g3KpsMmmXIwIIbTCUnGjZfVFwcfhoVV4XLTKSF7+IHBtwGijANMeYVwpTJUyTDCe40Ul4QAUwMkYsevdN8GLPSderEl4KfDGhAuKFWaMS5F5CuUJZSBISiaNppyRzfDii/CqoFbFbkMEeZMQJBSw0gQLgYnRgmYQak8pqrnixBBFtN7QQsXLIigahSAGrASVhlNFCNWa5UoosbNiBl6O0eVKuGI+9H67+VB5pGlUfs3FI8zuK0IoFURzxrlWGZOiEB0MB+WTlFImnikfsArNzgGgyUVT0Dw/ADSX6KZ+ETDXmf+/d5P5jpvMny+b/1NXbOSKXbs5/3CrOT895F0LRs1ZAVZfRKyoR5nUUhsF3IXsVUZ7NejXzQF9fnE9wRpmlBozoiTHDMz+YHAfNgf3+hYdbSKURyg3GCsGP4bv7/O0ahT8cABRkOeLU8kudjT6eEiI7W6Dgw8u5H+cowSXq8N+ZUX05avOnCrLJ2oOQrGdLIhepZifDkAxBfWM5FQKLqTEGutsjYrhWAvJDZeEcPU8r++vwvL33WL58fIyDpI04lP38OTlkWYexoYAl9BUaCmyab8A/ClmkmGihGbqJaYOC7zDJ+cdfp/zDoMNvMOgKd4BQMRUFyk8oXJfwbmhjFNhlN2plNDsCQCnnmIEzg2IgrzUusYNn4xnU7nLOZG833yB0PvSI9nXc1AVN6OIVoprIqQQhL1oFmINsDvLwO5sDnanYWBz2TCwz5eBfb452OcNA3uJZr9iRqj8kkenOKEVtBfmiMoVR+WK1+WlbcMnLGqju35TBM9t5PzyKaSnrM95tv4uyiSV1vbXckmH807IdePQn1vYD2zEI4QYqcExGEnE4aA/bBz6c4klSrCnlcDGUAk/WOxTYmkdFln24oNlXHJrRtm06Ms8xphhTCvMlKBUlrgOBGXMKQRhrMzO9pbqrMa/sy3+nWbibyz+msEkilEimC7hb5PllBls95/a3f5p56vxP98W//Nm4g/6D9AzQTSWAmI6n9FP0HsOHk5rxcTO6ecCErqAii4hpGu+AFJhqgv46gLWug13Xbc3e0BqZ2kvmi3hVWK5om3MeRsX/dtgWuCejMaMC/BGBshutjbdvvlpowPVHBPhEpyK2+LACcCjKSwO6AlrU+XDPCMlBApCFcOGcF5MVCgVGORFhWSYZuspJIPvFdaaGODNSu/Vm7vrEOfGCcjt2cckkUSD8TDFcjYN8jHpBJJSLSlVIqfXICNpJSc0mBLbq6nl+knapcR6s+Xys0pNIRRSekoRKsE3ciV4visgIWCo9o+GSUWwoXxndK7zCJHeDO9O8/C2b4MS4G0aeDLhxbIRwNsIZV9UFlJJhdmOc7VLmfNmgJ83D3BQcK4tokJgRhjJ3761+q1hpmKIsWmxXRPmfEFkp3RKa6ivyNrm1UfV6tfVrSKGT9oqglaE+QpvAO4yf7vtcvdn63Etg7uQxrbrPDZ7wFkjsvhwiNJ1A6XTTtHWIBQjuVKKFXMM+IyFEDBFVzTbn4wR6WnOpFHcQDg1bJ8I0loktlGyWY/ACkFUvskKiIdgkA1JX4DZpzng+tnhPFrMP5H9Y5Po/kdjojoVHojRziHtykH7Hs0S3voSK/NX5YGXI32xCdIXjUGa2T/doCUTQJPAQoqt4OqEdWcJ9/PHgP68CdCfGwO0VWlBGIWYwo3UMt8dqs5UXwLoxUz1D4fwhaOWn5cxUuaKJa7Y1DHPeCvGyQ6aaSYNipPrJkqd/1TYg8mq0JLCrFUc0Bar0waJZI5WFpR/Aa0U3EuTNhpin9REH87mEnGDRFJnk/njtqV0kmDiEZCI/VMaQrJ9YpOLV2rL7beakE1ahc1BCyRQfIMFVcKupksFaTzFhMQc6/TtPVbZFutxdNRz7pygmoSXwB43pa0m8rww9qTSxtiMPzfACc1mgOmXXfivGwWhddEKc66xMZrlKgcQGnDbTAr3j9pQ58xz6pxpEmASANOW+2arL0Ux1WBYGfsnPRgBnaw+jFhjtxz8skoH928QiFR6lHEN5MAYzqgyvECRSmY3KpWKEl77OzRlFIG0j2MYQBpU7PkgiAZBd+r/8D9QSwcIDI4DVY8PAAC6jQAAUEsBAhQAFAAIAAgAYUrlQNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACABhSuVADI4DVY8PAAC6jQAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAACYQAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br />--[[Benutzer:Studentin|Studentin]] 09:19, 5. Jul. 2012 (CEST)
+
<ggb_applet width="1822" height="802"  version="4.0" ggbBase64="UEsDBBQACAAIAGFK5UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAGFK5UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5V3ZcuM2Fn1OvgKlhzxFNPYlsZNqO0t3Wu7uxD1TU/OSoiRaZlsSFZHeUvn4uSBIiqQWS7ItU5o4booiQADnbgeXBHz84/1oiG6DaRxG45MW8XALBeNe1A/Hg5PWTXLZ1q0ff/j6eBBEg6A79dFlNB35yUmL25Jh/6TVZ5f+5aXEbeMT3eaXPmt3hSLtfj8IRFcJ+O21ELqPw+/G0Qd/FMQTvxdc9K6Ckd+Jen6SNnyVJJPvjo7u7u68vCkvmg6OBoOudx/3Wwi6OY5PWtmH7+B2lUp3LC1OMSZH/znvuNu3w3Gc+ONe0EJ2CDfhD19/dXwXjvvRHboL+8kVDJjRFroKwsEVjInpFjqyZSaAxyToJeFtEEPN0mk65GQ0aaXF/LG9/pX7hIbFaFqoH96G/WB60sIeFS0UTcNgnGRXSdbKUV7/+DYM7tyN7Ke0Dd5CSRQNu769B/rnH0QxxehbeyDuQOEgpbuE3XeYuQN1B+4OwpXhrjp3Rbkrw10ZzlroNozD7jA4aV36wxggC8eXUxBXcR4nD8Mg7U/2xWy85FsYUxz+DYUZBr1wGMP3GH9rfyX8cnvhqDpIUmo1md5s2GjeJNGUrt8mfdJIWd4oF3K+TSqWjFOuaNQNfK2BihK20FT6f/o71yJbNcx6i+78aQ1KvpMhHh/ltnKcmQeKr2zZTH2SYBRbg2EGCWP1niABxiEVqLlAxMBBUQTmgIhAXMAp0Ujao0JMwQWOGNLIliMMpdYhNPzDVXoziQTczH6rwCgRgYY4EgyR1Kg4AlNCqWGCkVIGJYRAAirZ5gm1t2AScQlnTCMOfbQ2qQgUZFARzqF5ihhBzFYmClGJpL0f4dbWpbZdh1tSJDGSxN4QzBpM2pkzlNeI2dHIDK5wPLlJKhD1Rv38YxJNCllAaXBIM0fnHFTFD351PPS7wRAiw4WVJEK3/tBaRNrQZTROUC5E6r4bTP3JVdiLL4IkgVox+uLf+h0/Ce5/gdJx3nZatheN40/TKDmLhjejcYxQLxrios/RkJQ+06LXcMJKF3j5gihdkKXPamG7EVxBN3EA7UfTOC/u9/vvbImZawAkP46HD6fTwL+eRGF1GMdHaZA5Dm56w7Af+uN/g7LaViwuqIg5qb/Kg47GJO9JNO1fPMSgwuj+v8E0Omkp5mEy+wEreXAXqDIe1ZxL434U9KznW9Oj1KOyqIKNAU14WHINbDZtObgtJOTfB7PBDqZhoSv287v4NBr2i8vp8M/8SXIzTdkC+MapHdOb8WAYpCqSGjaE4t51N7q/cLrB3L0+P0zgDLsOdAcp7AhcAxUQLgfZseuOaRnbs6IUTsvgtATOlS3sF9eJoWmJ9Nh1x7QUaK/rWjZSko+S4LyZME4dGm5lZpM7K6v7NrTfjMOkk58kYe96NlRb4cPNqBsUGlS9J3muex4f1VTs+DqYjoNhptEgy5voJnYGWlL2ftALR3DqLmSQ+FZc/4IOuG/7wWAa5B0fpkzMAZZexWVdnfs6vdUv02j0bnz7GXSh1oHjo7yXx3FvGk6syqEuRIHrYKZV/TD2IYj0y/WsCcLQezZYADyJhQaM8ya5iqYp2wKfAkdrecNgBEwLJal6pRpawPwmJW0WTxR1v4Bbq8thJjG4XuiSIKkq2UPXHfzh5Mq31C4b9tB/CKYVINIbnkf9OjyAfjoGMPKJk+4kCJxiuB7DhwncLrWnipcCvGN07xpFDxn//tsxdsdZ7VitjVXcsvu2JijQHgfTI4CdHhJgeAeAnR0CYPKZAetFo5E/7qNxSgU/RcOHQTRuzciJj61pIp9YhUM+tTA6iG6S/Do4uSFEEeKK9VwxHw4Q/buuwayZBRJyDeYiKG5VDQcJEJVrmI7F6QwhyaJT+uFtCHPZlKQezYk3o87u1iU41xQv2US8y7UwDgb2rOhIb14Pn9jRDfVwpk28pk2zW20BffDX2FWJXXgMR5Nh2AuTQl+GVq/fjRMIlkEaLeZj4HUQTCz5+Dj+PPXHsc1nuDKl2LomzH5zYM69nDxAmLvNgbmdq3M7B5ryPUa6Gr1+OoToReqW8JLx/ueDQqz9XJBVI34H7KIW7n9ycfznuTjfXx3LrYkV2Pab4xYIrUW5NqEv5oHXVc5fHlPOFwfoObSzcLi7mPD8ehD2nCsj3ZU5/+LM+dc5cw42MOegOebczqdAOkNQyF0YcxXn83A6jaaL50n9OaTffONPovj7x6ZClXRIVuWVVX4GOy3lNir/kRdQ44Xwni6D93RzeE8bCy/xKOWSS2UM4YoJxn5uE7ErjM+WYXy2OcZnTcOY8EKFtdFCK2Kk0IYTC7HcXTolw8UlVYoTWgF5YYKlXLFXrugXJzblsp6oFideSjLbZfolf6Cwk/zLMr3caX/Lisk8U/1PVvmqMrUCezunnUvSNE4WymNcaY2V4VpzQp1rKE/A2guKiIORSLdxEinSOrJE+KoMZH/AX4dGlt18UPSkdnlrStm4qCy9zMKMR0jZy6mdMcvViJ9ui/hpQxGnnn0D6SHNLlFWhlzvjGiuhvxsW8jPGgo59uw7WCn35Koay3fMOxewzwUcdC0m6v79k1QY6QJeuoCdPp2jFo3/H3DV5sVk4hFaywJYjsQ8zV2MZjVnvkcxei3K2jiRCE9lRJV4supiXCBtg0yU3FPetBZpbZxMgLpKVvP2D1ZUgubPJyvXtdwjkayfEV1KYv8kWxDYzOU3Ja4LMS/gtn1stzMudfoIcd0M5dPmoSw95fhqW3vmJRJ1q3KhS8npZrCeNQ9W7fE8atNds9CcNJ6WTmkN2hXMs8Y58+p+6XTGNR8X1CqeuUuGmb9fvcu30Zbr5U57XGeXFfJoaEEv6+HUEhsqPV1hPIeTjvObKB5R5ZEZ+QfaqSt5OZnPBKqlD0c43QYKB0xBZy8YkAozySZmbYGhREkcc2svGiyO9bOneYCYf5L5dpOo/bY50dp4nJfNiL0G03wM3HebgPuuOeASoEAV50VegW8+Bu5vm4D7W4PAhciwe6L51sH4zjHD39ZKZboqX1yVK0ciw6cnKQ+aQH5pUPBbRhzrvNE5TG48WqaNao8i4WqZXDVJJovZYrtOF7OXnCSBOHcwgggbJIiCGbbr1FC6GNfW0lOkYiZ7JIf7yRQ6Zt/OzbD9HNwnABxcOGl989dNlHz/5vTMfUgrVyWXQOlWtepWoqsuft46esaJP00+2TiI0hDqYUaVFhg0g3KpsMmmXIwIIbTCUnGjZfVFwcfhoVV4XLTKSF7+IHBtwGijANMeYVwpTJUyTDCe40Ul4QAUwMkYsevdN8GLPSderEl4KfDGhAuKFWaMS5F5CuUJZSBISiaNppyRzfDii/CqoFbFbkMEeZMQJBSw0gQLgYnRgmYQak8pqrnixBBFtN7QQsXLIigahSAGrASVhlNFCNWa5UoosbNiBl6O0eVKuGI+9H67+VB5pGlUfs3FI8zuK0IoFURzxrlWGZOiEB0MB+WTlFImnikfsArNzgGgyUVT0Dw/ADSX6KZ+ETDXmf+/d5P5jpvMny+b/1NXbOSKXbs5/3CrOT895F0LRs1ZAVZfRKyoR5nUUhsF3IXsVUZ7NejXzQF9fnE9wRpmlBozoiTHDMz+YHAfNgf3+hYdbSKURyg3GCsGP4bv7/O0ahT8cABRkOeLU8kudjT6eEiI7W6Dgw8u5H+cowSXq8N+ZUX05avOnCrLJ2oOQrGdLIhepZifDkAxBfWM5FQKLqTEGutsjYrhWAvJDZeEcPU8r++vwvL33WL58fIyDpI04lP38OTlkWYexoYAl9BUaCmyab8A/ClmkmGihGbqJaYOC7zDJ+cdfp/zDoMNvMOgKd4BQMRUFyk8oXJfwbmhjFNhlN2plNDsCQCnnmIEzg2IgrzUusYNn4xnU7nLOZG833yB0PvSI9nXc1AVN6OIVoprIqQQhL1oFmINsDvLwO5sDnanYWBz2TCwz5eBfb452OcNA3uJZr9iRqj8kkenOKEVtBfmiMoVR+WK1+WlbcMnLGqju35TBM9t5PzyKaSnrM95tv4uyiSV1vbXckmH807IdePQn1vYD2zEI4QYqcExGEnE4aA/bBz6c4klSrCnlcDGUAk/WOxTYmkdFln24oNlXHJrRtm06Ms8xphhTCvMlKBUlrgOBGXMKQRhrMzO9pbqrMa/sy3+nWbibyz+msEkilEimC7hb5PllBls95/a3f5p56vxP98W//Nm4g/6D9AzQTSWAmI6n9FP0HsOHk5rxcTO6ecCErqAii4hpGu+AFJhqgv46gLWug13Xbc3e0BqZ2kvmi3hVWK5om3MeRsX/dtgWuCejMaMC/BGBshutjbdvvlpowPVHBPhEpyK2+LACcCjKSwO6AlrU+XDPCMlBApCFcOGcF5MVCgVGORFhWSYZuspJIPvFdaaGODNSu/Vm7vrEOfGCcjt2cckkUSD8TDFcjYN8jHpBJJSLSlVIqfXICNpJSc0mBLbq6nl+knapcR6s+Xys0pNIRRSekoRKsE3ciV4visgIWCo9o+GSUWwoXxndK7zCJHeDO9O8/C2b4MS4G0aeDLhxbIRwNsIZV9UFlJJhdmOc7VLmfNmgJ83D3BQcK4tokJgRhjJ3761+q1hpmKIsWmxXRPmfEFkp3RKa6ivyNrm1UfV6tfVrSKGT9oqglaE+QpvAO4yf7vtcvdn63Etg7uQxrbrPDZ7wFkjsvhwiNJ1A6XTTtHWIBQjuVKKFXMM+IyFEDBFVzTbn4wR6WnOpFHcQDg1bJ8I0loktlGyWY/ACkFUvskKiIdgkA1JX4DZpzng+tnhPFrMP5H9Y5Po/kdjojoVHojRziHtykH7Hs0S3voSK/NX5YGXI32xCdIXjUGa2T/doCUTQJPAQoqt4OqEdWcJ9/PHgP68CdCfGwO0VWlBGIWYwo3UMt8dqs5UXwLoxUz1D4fwhaOWn5cxUuaKJa7Y1DHPeCvGyQ6aaSYNipPrJkqd/1TYg8mq0JLCrFUc0Bar0waJZI5WFpR/Aa0U3EuTNhpin9REH87mEnGDRFJnk/njtqV0kmDiEZCI/VMaQrJ9YpOLV2rL7beakE1ahc1BCyRQfIMFVcKupksFaTzFhMQc6/TtPVbZFutxdNRz7pygmoSXwB43pa0m8rww9qTSxtiMPzfACc1mgOmXXfivGwWhddEKc66xMZrlKgcQGnDbTAr3j9pQ58xz6pxpEmASANOW+2arL0Ux1WBYGfsnPRgBnaw+jFhjtxz8skoH928QiFR6lHEN5MAYzqgyvECRSmY3KpWKEl77OzRlFIG0j2MYQBpU7PkgiAZBd+r/8D9QSwcIDI4DVY8PAAC6jQAAUEsBAhQAFAAIAAgAYUrlQNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACABhSuVADI4DVY8PAAC6jQAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAACYQAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br />--[[Benutzer:Studentin|Studentin]] 09:19, 5. Jul. 2012 (CEST)<br />
 +
 
 +
Danke für die schöne Applikation. Jetzt können die Fragen oben leichter beantwortet werden. Was für Vermutungen habt ihr? Was ändert sich?--[[Benutzer:Tutorin Anne|Tutorin Anne]] 20:02, 5. Jul. 2012 (CEST)
 +
 
 
[[Kategorie:Einführung_P]]
 
[[Kategorie:Einführung_P]]

Aktuelle Version vom 6. Juli 2012, 07:07 Uhr

  1. Was ändert sich, wenn man die Reihenfolge bei der Verkettung zweier Achsenspiegelungen mit einem gemeinsamen Schnittpunkt vertauscht?
  2. Was ändert sich, wenn man die Reihenfolge bei der Verkettung zweier Achsenspiegelungen mit zueinander parallelen Achsen vertauscht?


1. links, 2. rechts (die schwarzen "urspünglichen" dreiecke können bewegt werden):


--Studentin 09:19, 5. Jul. 2012 (CEST)

Danke für die schöne Applikation. Jetzt können die Fragen oben leichter beantwortet werden. Was für Vermutungen habt ihr? Was ändert sich?--Tutorin Anne 20:02, 5. Jul. 2012 (CEST)