Lösung von Aufgabe 12.3P (SoSe 12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
 
(Eine dazwischenliegende Version von einem Benutzer wird nicht angezeigt)
Zeile 1: Zeile 1:
 
Beweisen Sie den starken Außenwinkelsatz für Dreiecke.
 
Beweisen Sie den starken Außenwinkelsatz für Dreiecke.
 
<br />
 
<br />
in jedem dreieck ist das maß eines jeden außenwinkels so groß wie die summe der größen der beiden nichtanliegenden innenwinkel.
+
in jedem dreieck ist das maß eines jeden außenwinkels so groß wie die summe der beiden nichtanliegenden innenwinkel.
<br />wieder wird das rote dreieck zweimal gespiegelt, hier um den satz am beispiel der ecke b zu zeigen.<br /><ggb_applet width="1580" height="779"  version="4.0" ggbBase64="UEsDBBQACAAIAPKF7UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAPKF7UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vvbktu4EX32fgWKD3myJALgTY7GWx5VOXHVeL2VcVKpvIEkJGGHIhmSum3tT2X3P/xNaQAkRUoaDUejuTlxWQZBNNDo0xegW/Lox/U8Qkue5SKJLwzcNw3E4yAJRTy9MBbFpOcZP77/YTTlyZT7GUOTJJuz4sKwJKUIL4xgwvyhRWiPYpv0LJ+5Pd/3nZ4/4cwkASOm7xoIrXPxLk5+YnOepyzg18GMz9lVErBCMZ4VRfpuMFitVv2KVT/JpoPp1O+v89BAsM04vzDKh3ewXGvSiipyYpp48M/PV3r5nojzgsUBN5AUYSHe//BmtBJxmKzQSoTFDAS2h46BZlxMZyCU53kGGkiqFBBJeVCIJc9hbqOrhC7mqaHIWCzH3+gnFNXyGCgUSxHy7MIw+5jYFFPiUWJ6JmzRMlCSCR4XJTEumQ6q5UZLwVd6XfmkWMKkIkkin8kl0W+/IQJLobeywboh0DiOHjL1O5PqhujG0o2taSw93dKklqaxNI1FDbQUufAjfmFMWJQDhiKeZKC/up8Xm4ir/ZQvtuLjtyBTLn4FYmqCoWjQ4b1pvpUfBz6WHBi0hcQNrkW2uCfTiiW2vXvwJA+SlFZMySE5iX2LnM4RplrwboI2eAIr9Vd99jjSY2LuctT9hzF0rCcRcTSofGVUugfKZ5K2NJ+Cz3PpMHSI7KG0e4xscA7HBTO3ER5C4xIE7oCwjSwbuthDjmxdRF0YsBBFHpJ0mCLlHbYH/1iuWsxBNiwm37rglAgDIwvZFGHlVBYCV0LKMcFJCQUK20Y2TJLsMZFLUAdZDvSohyzYo/RJFwMhhYnQB/YEUYyonIxdRBzkyPWwJX3d8eTWYUmCHBM5WC4Ibg0urd0Z6D1EpTROCZeI00VRQlSiHszDCq4iSevXQA4RaRv4dIRqxcU3o4j5PIKz4lqqEqEli6RLKE6TJC5QpUWi300zls5EkF/zooBZOfqFLdkVK/j6I1DnFW9FGyRx/nOWFOMkWszjHKEgicxqo/CMG89kK0wS0caA1RywGwNO49k9yDeBEbTIOfBPsrwiZ2H4SVJsYwNA+SWONpcZZzdpItpijAbq2BnxRRCJULD4H2CtkovEBW1PIRmwqlPIdb1qJ0kWXm9ysGG0/hfPEvAq05UH70b3qKcO7Dxg0smsYX/Y/ANn2aYcsk2gU2vyZY09W/OtGNNM1FYgnz/ll0kU1sNKsDFLi0WmbgYQ9jK52w/xNOJK+cpn4dgNbvxkfa21TvVaXzcp9MoN+FMFKAKvJ7YNBGXr61bRyJ3VVKaiMRWFWZmRCOtxPCSKQrW+bhUV2KXeWikprqTEZsVG5CpWmUbbI5RVy0N8EYviquoUIrjZiion/LSY+7y2jfaa+FxrjgY7xjO64VnMo9JWQZeLZJFr12uYccgDMYeuHighYVJdf4cN6Lchn2a82nikbl0aMDVqNq1w77Va6mOWzD/Fy69gCzsbGA2qXY7yIBOpNDnkQ4C/4VurCkXO4HwIm/Okc4HogTwHAJ5CQgNutyhmSabuVRAtoJU+FfE5XKJQocxLWWgN8wd1PZN4osT/BQJWfajp8a3CYHjPILWx2aARFqUzJu9wpdQR2/CshYNa8MtkkvMCrS+MHgTaDTS4Ofw5CXfBA90oCcG5U637lHNtNloeeEiBm/K2VnQCbeSSk6MCAbiibH/Vd3d9d5VISA9shWP9dkeNYFsaxDvgvHwuOG0lInEeG0xcgtkjT4Dm+NmMEw+1yViPjafX95zzAhok8zmLQxSrC+TPSbSZJrGxvdIwU3o9YlhaK2JEwqwxXBTVOMTPCA4orMkCTcaggSuDrxmWbA5oUDOsdFQv1T5pCrjd3EASl6u8oigPPvXwVxGGXF1tB8fV3wC0o/7xUf3vKPh2K835VPbqjQR32On9N3rcUPcscWtPduWfdmlOPWzXq52APv93rKfk+vAV8zQSgShqk4mkcX+KCziKuTqL9k/YG85TebX5En/NWJzLyoimaZzcHZFmLwdps0Ta7Xt26zqpvdjuu7j9+nvRgf9ydNCzt8fRjhYspQbq9W3vFSHfDt6fRagPxHb0DvbidZ4KPuVRuohvCnxXfG6esO2Jp5y2UpFn1irt69uMKdsjJ6J9hivGx32h23nIYambuZYy7FOlPscdokef8Ib7l+8AMILPDNiu22ZZkh2+cu15asuPP/yJpUn+5/t4cDXlFN/VSiGyzn76TZloJIfdfPvs+UMH6C+7QH95f+gvnxl6SsurXjfoz50Hd0B+3AX58f2RHz8z8kQj3/WWgg9cTh5NEbdkfCViOu+rO6QF/8EcsDkxaE5kdUdmhd2UeDg3bGjzSTLEIybwWBliJ4N95O0evDlXeeL3lSa+NLirZLF3OFsk9HWlKXckiC8N/crWb0kSzZ1U3XtNuXo7+KuvmXZCf12B243w3/6jo/q333VA//bH8fCtvsmo9Qez5XqwsUWJO+5T0xq61tAyPeq5pntXeD52QGOz+ibr/gaAT9cfy4LGAVzlHFGUrP7GJxFfK4C7OsYOYL/vAgaG59l06GGHUsDN8uj/EWsh9se+iZk2JnhoW0NqU4d6/3uAtR3+CjZwON3Zr+pPj7u3lKXGbfqQ6L0P6yuvst67ROffcqluZkLk1EIdOSnvkb8zmurG180Z6q9m3yIt/N2zVu661FWa+ckevIeqKyfXWB6QdJZVUtk8tAD2XHnl4dJKd/QvT0X/8oWi7+yHpCcubI27oz8+Ff3xM6LfqLjYpMMPHJ6szHi0xnKg0nKg3tKp6nKg9nKgAnOgDvPwasxT12SOWcnjFmUekq2ebddHv8MnVn/3lH09CWqnSs2L08HLuHc+X/HmxSnkzq/6e6+6jDNo/pxT/Ry6/N897/8LUEsHCOmtch9zCAAAejQAAFBLAQIUABQACAAIAPKF7UDWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAIAAgA8oXtQOmtch9zCAAAejQAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAAAKCQAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br />--[[Benutzer:Studentin|Studentin]] 16:48, 13. Jul. 2012 (CEST)
+
<br />wieder wird das rote dreieck zweimal gespiegelt, hier um den satz am beispiel der ecke b zu zeigen.<br />
 +
<ggb_applet width="1580" height="779"  version="4.0" ggbBase64="UEsDBBQACAAIADKG7UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIADKG7UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vtfc9u4EX/OfQoMH/oUSQTAf0rl3MSaSZsZ53JTp51O30ASknGmSJakbPnmvlTvvkc+UxcASZESLVOybMtpM1FAEAss9re7WOxKmfy4WkTohme5SOIzAw9NA/E4SEIRz8+MZTEbeMaP73+YzHky537G0CzJFqw4MyxJKcIzI5gxf2wROqDYJgPLZ+7A931n4M84M0nAiOm7BkKrXLyLk5/YgucpC/hlcMUX7CIJWKEYXxVF+m40ur29HVashkk2H83n/nCVhwaCbcb5mVE+vIPlWpNuqSInpolH//x8oZcfiDgvWBxwA0kRluL9D28mtyIOk1t0K8LiCgS2x46BrriYX4FQnucZaCSpUkAk5UEhbngOcxtdJXSxSA1FxmI5/kY/oaiWx0ChuBEhz84Mc4iJTTElHiWmZ8IWLQMlmeBxURLjkumoWm5yI/itXlc+KZYwqUiSyGdySfTbb4jAUuitbLBuCDSOo4dM/c6kuiG6sXRjaxpLT7c0qaVpLE1jUQPdiFz4ET8zZizKAUMRzzLQX93Pi7uIq/2UL9bi47cgUy5+BWJqgqFo0OG9ab6VHwc+lhwYtYXEDa5FttyTacUS294ePMmjJKUVU9IlJ7HvkdPZwVQL3k/QBk9gpf6qzxZHukvMTY66/ziGjvUsIk5Gla9MSvdA+ZWkLc2n4ItcOgwdI3ss7R4jG5zDccHMbYTH0LgEgTsgbCPLhi72kCNbF1EXBixEkYckHaZIeYftwT+WqxZzkA2LybcuOCXCwMhCNkVYOZWFwJWQckxwUkKBwraRDZMke0zkEtRBlgM96iEL9ih90sVASGEi9IE9QRQjKidjFxEHOXI9bElfdzy5dViSIMdEDpYLgluDS2t3BnoPUSmNU8Il4nRZlBCVqAeLsIKrSNL6NZDDibQ++PQJ1ToX30wi5vMIYsWlVCVCNyySLqE4zZK4QJUWiX43z1h6JYL8khcFzMrRL+yGXbCCrz4CdV7xVrRBEuc/Z0kxTaLlIs4RCpLIrDYKz7jxTNbCJBFtDFjNAbsx4DSe3U6+CYygZc6Bf5LlFTkLw0+SYn02AJRf4ujuPOPsOk1EW4zJSIWdCV8GkQgFi/8B1iq5SFzQOgrJA6uKQq7rVTtJsvDyLgcbRqt/8SwBrzJdGXjvdI96KmDnAZNOZo2H4+YfiGV35ZBtAp1ak9/U2LMVX4sxz0RtBfL5U36eRGE9rASbsrRYZupmAMdeJnf7IZ5HXClf+SyE3eDaT1aXWutUr/X1LoVeuQF/rgBF4PXEtoGgbH3dKhq5s5rKVDSmojArMxJhPY7HRFGo1tetogK71FsrJcWVlNis2IhcnVWm0fYIZdUyiC9jUVxUnUIE12tR5YSflguf17bRXhMfa83JaMN4Jtc8i3lU2irocpksc+16DTMOeSAW0NUDJSRMquvvsAH9NuTzjFcbj9StSwOmRs2mFW69Vkt9zJLFp/jmK9jCxgYmo2qXkzzIRCpNDvlwwF/ztVWFImcQH8LmPOlcIHog4wDAU0howO2WxVWSqXsVnBbQSp+K+AIuUahQ5qUstIb5g7qeSTxR4v8CB1Yd1PT4WmEwvGWQ2ths0AiL0ism73Cl1BG741kLB7Xgl9ks5wVagfOC07XHPifhJnKgGCUeeHaqFZ9yrm1GCwMPKbBSrtY6mkAVuWTjqFMA/FC2v+qLu764Shik+7XOYv12Q4dgWBrBB7A8f1ksCXlqMHEJ5oA8A5rTl0ITazTpU6PpDT3nuHAGyWLB4hDF6u74cxLdzZPYWN9mmCkdHjEsbRUxIkHWCC6LahyOzghiE9ZkgSZj0MBtwdcMSzYd+tMMKw3VS7WDTAEXm2vI33KVUhRlzFMPfxVhyNWtdrRb+Q1Ae2of79T+hoLvt9Gcz2Wv3kjwgJXuv9HdZrpliWt7sivvtEtzGmC7Xu0A9Pm/Yz0l13FXLNJIBKKoTSaSxv0pLiAKcxWGtoPrNeepvNV8ib9mLM5lUUTTNIJ2T6TZ6SBtlki7Q89u3SS1F9tDF7dffy868E9HBwN7HYw2tGApNVBvaHuvCPn24f1ZhDoctk/vYOu8zlPB5zxKl/F1gR86n5vxtT3xkFgrFXlkrdKhre+Fst0REe0jXDA+bgvdTkG6pW6mWcqwD5X6GHeIAX3G++1fvgPACD4yYJtum2VJ1n3l2vLUlh9/+BNLk/zP+3hwNeUQ39VKIbLEfug9eaBvrxT3c+2jJw89kD/vg/z5/sifvzDy2NNQ9oT+2ElwD+SnfZCf7o/89GWRL03Y6nlHwR1XkyfTwz35XgmYzvrqDmmh35kBNicGzYms7sicsJ8OuzPDhjKfJT/cYQFPlR/2stcn3m7nvbnKEr+vJPHU4K5SxUF3rkjo60pSHkgPTw39ytbvSRHNjUTde02ZevvwV98vbRz9df1t84T/9h99qn/7XR/o3/7YfXyrrzBq/cFsuR5sbFnijofUtMauNbZMj3qu6T50PO+Kz9isvsLa3wDw4fpjWdAIwFXGEUXJ7d/4LOIrBXBfx9gA7PdNwMDwPJuOPexQCrhZHv0/Yi3E/tg2MdPGBI9ta0xt6lDvfw+wtsNfwAa6s53tmv58t3tLWWrc5o85vbdhfeU11r0LdP49l+pmIkQOLdORg9Ie+QOjuW583Ryh+moOLdLC3z1q3a5PVaWZn2zB21VbObjC8oics6yRymbP8ldHur/zK8mXSju7Cy/9lXN+qHLOT0M544d/yNBQjbN9nD1zTWzaXzXTQ1UzPQ3VEKJv/z3LNU9codxZn+mo0nTUanpVbDrqNh3Vm44azuMrOc9dz9llJU9b0HlMpnu0Xe/89p9Yw80I/XqS215VnpPTwWncWV+u8HNyCnnwRwKDV10CGjV/A6p+Q13+l6D3/wVQSwcIzB4/xXsIAACvNAAAUEsBAhQAFAAIAAgAMobtQNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAyhu1AzB4/xXsIAACvNAAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAABIJAAAAAA==" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br />--[[Benutzer:Studentin|Studentin]] 16:48, 13. Jul. 2012 (CEST)
 
[[Kategorie:Einführung_P]]
 
[[Kategorie:Einführung_P]]

Aktuelle Version vom 13. Juli 2012, 16:20 Uhr

Beweisen Sie den starken Außenwinkelsatz für Dreiecke.
in jedem dreieck ist das maß eines jeden außenwinkels so groß wie die summe der beiden nichtanliegenden innenwinkel.
wieder wird das rote dreieck zweimal gespiegelt, hier um den satz am beispiel der ecke b zu zeigen.


--Studentin 16:48, 13. Jul. 2012 (CEST)