Serie 05 12 13: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (→Aufgabe 5.2) |
K (→Aufgabe 5.3) |
||
(5 dazwischenliegende Versionen von einem Benutzer werden nicht angezeigt) | |||
Zeile 15: | Zeile 15: | ||
<math>\forall P=\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R} \setminus Z: ZP_Z(P)=ZP\cap \varepsilon</math>.<br /> | <math>\forall P=\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R} \setminus Z: ZP_Z(P)=ZP\cap \varepsilon</math>.<br /> | ||
Beweisen Sie: <math>ZP_Z</math> ist linear. | Beweisen Sie: <math>ZP_Z</math> ist linear. | ||
+ | |||
+ | =Aufgabe 5.3= | ||
+ | Geben sei <math>B</math> eine Menge, die aus folgenden Vektoren des <math>\mathbb{R}3</math> besteht:<br /> | ||
+ | |||
+ | <math>\vec{b_1}=\begin{pmatrix}2 \\ 0 \\ 0\end{pmatrix}</math>, <math>\vec{b_2}=\begin{pmatrix}2 \\ 2 \\ 0\end{pmatrix}</math>, <math>\vec{b_3}=\begin{pmatrix}0 \\ 0 \\ 3\end{pmatrix}</math> | ||
+ | |||
+ | Beweisen Sie: Jedes <math>\vec{a}</math> aus <math>\mathbb{R}^3</math> lässt sich als Linearkombination der Vektoren der Menge <math>M</math> darstellen. |
Aktuelle Version vom 6. Januar 2013, 18:04 Uhr
Aufgabe 5.1
Es sei .
Wir definieren die folgende Abbildung
.
Beweisen Sie: ist eine lineare Abbildung.
Interpretieren Sie geometrisch.
Hilfe:
Aufgabe 5.2
Es sei ,
Es sei die Ebene, die wir wiederum als interpretieren. Wir bilden jedes Element des mittels der Abbildung auf wie folgt ab:
.
Beweisen Sie: ist linear.
Aufgabe 5.3
Geben sei eine Menge, die aus folgenden Vektoren des besteht:
, ,
Beweisen Sie: Jedes aus lässt sich als Linearkombination der Vektoren der Menge darstellen.