Lösung von Aufgabe 3.2 (WS 12 13 P): Unterschied zwischen den Versionen
Würmli (Diskussion | Beiträge) |
|||
Zeile 9: | Zeile 9: | ||
Bew: Da nach Voraussetzung |AC| ≠ |BC| gilt nach dem Basiswinkelsatz |α| ≠ |β|. Damit ist der Satz bewiesen. | Bew: Da nach Voraussetzung |AC| ≠ |BC| gilt nach dem Basiswinkelsatz |α| ≠ |β|. Damit ist der Satz bewiesen. | ||
<br /><br /> | <br /><br /> | ||
− | Nicht korrekt, da dies die Kontraposition des Basiswinkelsatzes ist und nicht der Basiswinkelsatz selber.--Würmli 13:32, 3. Feb. 2013 (CET) | + | Nicht korrekt, da dies die <s>Kontraposition des Basiswinkelsatzes</s> ist und nicht der Basiswinkelsatz selber.--Würmli 13:32, 3. Feb. 2013 (CET) |
− | + | *Richtig, der Beweis ist nicht korrekt. Allerdings wird hier die '''Kontraposition der Umkehrung''' genutzt, aber eben nicht so begründet.--[[Benutzer:Tutorin Anne|Tutorin Anne]] 12:49, 4. Feb. 2013 (CET) | |
Beweis 2) | Beweis 2) | ||
Zeile 28: | Zeile 28: | ||
Beh: |α| ≠ |β|<br /> | Beh: |α| ≠ |β|<br /> | ||
Bew: Nehmen wir an |α| = |β|. Wenn |α| = |β| dann gilt |AC|= |BC| wegen der Umkehrung des Basiswinkelsatzes. Demnach steht |AC|= |BC| im Wiederspruch zur Vorraussetzung weil |AC|= |BC|<math>\neq</math> |AC|< |BC|. Damit ist der Satz bewiesen. | Bew: Nehmen wir an |α| = |β|. Wenn |α| = |β| dann gilt |AC|= |BC| wegen der Umkehrung des Basiswinkelsatzes. Demnach steht |AC|= |BC| im Wiederspruch zur Vorraussetzung weil |AC|= |BC|<math>\neq</math> |AC|< |BC|. Damit ist der Satz bewiesen. | ||
− | + | <br /> | |
− | --Würmli 13:32, 3. Feb. 2013 (CET) | + | --Würmli 13:32, 3. Feb. 2013 (CET)<br /> |
+ | * Sehr gut Würmli!--[[Benutzer:Tutorin Anne|Tutorin Anne]] 12:49, 4. Feb. 2013 (CET) | ||
[[Category:Einführung_P]] | [[Category:Einführung_P]] |
Aktuelle Version vom 4. Februar 2013, 12:49 Uhr
Satz: In einem Dreieck mit |AC|< |BC| < |AB| sind die Winkel α und β nicht kongruent zueinander.
a) Welcher Beweis ist korrekt? Begründen Sie ausführlich! (Der Basiswinkelsatz und seine Umkehrung seien bereits bewiesen.)
Beweis 1)
Sei ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Da nach Voraussetzung |AC| ≠ |BC| gilt nach dem Basiswinkelsatz |α| ≠ |β|. Damit ist der Satz bewiesen.
Nicht korrekt, da dies die Kontraposition des Basiswinkelsatzes ist und nicht der Basiswinkelsatz selber.--Würmli 13:32, 3. Feb. 2013 (CET)
- Richtig, der Beweis ist nicht korrekt. Allerdings wird hier die Kontraposition der Umkehrung genutzt, aber eben nicht so begründet.--Tutorin Anne 12:49, 4. Feb. 2013 (CET)
Beweis 2)
Sei ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Nach Umkehrung des Basiswinkelsatzes gilt: Wenn |α|= |β| dann gilt |AC|= |BC|. Die Kontraposition der Umkehrung lautet also: Wenn |AC| ≠ |BC| dann gilt |α| ≠ |β|. Da die Kontraposition gleichwertig ist, kann man auch diese beweisen. Da nach Voraussetzung gilt: |AC|< |BC|, d.h. |AC| ≠ |BC|, kann nach Kontraposition der Umkehrung des Basiswinkelsatzes direkt gefolgert werden: |α| ≠ |β|. Damit ist der Satz bewiesen.
Korrekter indirekter Beweis durch Kontraposition.--Würmli 13:32, 3. Feb. 2013 (CET)
b) Beweisen Sie den Satz indirekt mit Widerspruch.
Beweis:
Sei ein Dreieck.
Vor: |AC|< |BC| < |AB|.
Beh: |α| ≠ |β|
Bew: Nehmen wir an |α| = |β|. Wenn |α| = |β| dann gilt |AC|= |BC| wegen der Umkehrung des Basiswinkelsatzes. Demnach steht |AC|= |BC| im Wiederspruch zur Vorraussetzung weil |AC|= |BC| |AC|< |BC|. Damit ist der Satz bewiesen.
--Würmli 13:32, 3. Feb. 2013 (CET)
- Sehr gut Würmli!--Tutorin Anne 12:49, 4. Feb. 2013 (CET)