Lösung von Aufgabe 11.4P (SoSe 14): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „Beweisen Sie Satz IX.3: Bei einer Punktspiegelung ist der Schnittpunkt ''S'' der beiden Spiegelgeraden ''a'' und ''b'' Mittelpunkt der Strecke <math>\overline{…“)
 
 
Zeile 2: Zeile 2:
 
Bei einer Punktspiegelung ist der Schnittpunkt ''S'' der beiden Spiegelgeraden ''a'' und ''b'' Mittelpunkt der Strecke <math>\overline{PP''}</math>, mit <math>P''=S_a\circ S_b(P) </math>.<br />
 
Bei einer Punktspiegelung ist der Schnittpunkt ''S'' der beiden Spiegelgeraden ''a'' und ''b'' Mittelpunkt der Strecke <math>\overline{PP''}</math>, mit <math>P''=S_a\circ S_b(P) </math>.<br />
 
[[Kategorie:Einführung_P]]
 
[[Kategorie:Einführung_P]]
 +
 +
Die Tabelle kann vielleicht helfen, dass es ordentlicher aussieht:--[[Benutzer:Tutorin Anne|Tutorin Anne]] ([[Benutzer Diskussion:Tutorin Anne|Diskussion]]) 11:11, 14. Jul. 2014 (CEST)
 +
 +
{| class="wikitable"
 +
|  Voraussetzung || (V. hier eintragen)
 +
|-
 +
| Behauptung || (Beh. hier eintragen)
 +
|}
 +
<br />
 +
 +
{| class="wikitable"
 +
!Nr. !!Beweisschritt!!Begründung
 +
|-
 +
| 1 ||(Schritt 1 hier)|| (Begründung 1)
 +
|-
 +
| 2 || (Schritt 2) || (Begründung 2)
 +
|-
 +
| 3 || (Schritt) || (Begründung)
 +
|-
 +
| 4 || (Schritt) || (Begründung)
 +
|}
 +
<br />

Aktuelle Version vom 14. Juli 2014, 10:11 Uhr

Beweisen Sie Satz IX.3: Bei einer Punktspiegelung ist der Schnittpunkt S der beiden Spiegelgeraden a und b Mittelpunkt der Strecke \overline{PP''}, mit P''=S_a\circ S_b(P) .

Die Tabelle kann vielleicht helfen, dass es ordentlicher aussieht:--Tutorin Anne (Diskussion) 11:11, 14. Jul. 2014 (CEST)

Voraussetzung (V. hier eintragen)
Behauptung (Beh. hier eintragen)


Nr. Beweisschritt Begründung
1 (Schritt 1 hier) (Begründung 1)
2 (Schritt 2) (Begründung 2)
3 (Schritt) (Begründung)
4 (Schritt) (Begründung)