Lösung von Aufgabe 1.2 (SoSe 17): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „Geben Sie eine andere Schreibweise der folgenden Mengen an und prüfen Sie, welche Mengen identisch sind.<br /><br /> <math>M_1 = \{x\vert x\in \mathbb{N}\wedg…“)
 
 
(3 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 10: Zeile 10:
  
 
[[Kategorie:Geo_P]]
 
[[Kategorie:Geo_P]]
 +
Könnte man mir ein Beispiel zur anderen Schreibweise geben. Ich habe das Skript durchgearbeitet und die Videos, aber mir ist die andere Schreibweise noch nicht so klar.
 +
Ansonsten bin ich bei der Gleichheit der Mengen zur folgenden Ansicht gekommen: M4 = M5 da bei beiden x²=2 und Q und R sich nicht ausschließen. Alles andere sind nicht gleiche Mengen, da ihr Definitionsbereich es nicht zulässt.
 +
 +
Hallo Kissa052,<br/>
 +
ich werde versuchen dir die erste Menge ausführlich zu beschreiben. Ziel dieser Übung ist es sich mit der
 +
Mengenschreibweise auseinanderzusetzen, vertraut zu machen und einzelne Mengen untereinander zu vergleichen.
 +
Dies machst du am besten, indem du die Elemente einer Menge beispielhaft, anhand der Vorschrift anschaust.<br/>
 +
<math>M_1 = \{x\vert x\in \mathbb{N}\wedge x+2 = 0\}</math><br /><br /> bedeutet: Die Menge <math> M_1 </math> enthält alle Elemente (alle Zahlen) <math> x </math>, für die gilt,
 +
<math> x \in \mathbb{N} </math> , sprich es soll eine Zahl aus den natürlichen Zahlen gewählt werden <u>'''und'''</u> (das ist dieses Zeichen <math>\wedge</math>) die Gleichung
 +
<math> x+2 = 0 </math> soll dabei erfüllt werden.<br/>
 +
Jetzt die Frage: Kennst du ein Element / Elemente der natürlichen Zahlen, die uns diese Gleichung löst? Ich denke da gibt es keins, denn <math> \mathbb{N}:=\{0,1,2,3,4,...\}</math>.
 +
Das gesuchte Element ist <math> -2 </math> , jedoch ist <math> -2 \notin \mathbb{N} </math>. Somit gilt: <math> M_1= \empty </math> .<br/>
 +
Zu deiner Aussage, dass <math> M_4 = M_5 </math> (nicht richtig) folgenden Hinweis:<br/>
 +
Du hast schon richtig geschlossen, dass <math> x^2=2 </math> . Auch hier die Frage: Welches Element <math> x </math> , löst uns diese Gleichung?
 +
(Wir müssen hier wurzelziehen, dann kommen wir schnell zu einem Problem in <math> \mathbb{Q} </math>).<br/>
 +
Nur weil hier andere ''Grundmengen'' (<math> \mathbb{N} , \mathbb{Z}, \mathbb{Q} \ und \ \mathbb{R} </math>)  verwendet worden sind, schließt das nicht zwangsweise aus, dass
 +
bspw. <math> M_3=M_6 </math> gilt. (diese Behauptung ist im Übrigen richtig ;) )
 +
Das Wort ''Definitonsbereich'' steht im Zusammenhang mit Funktionen, was ich hier nicht verwenden würde.<br><br/>
 +
Hoffe, dass ich dir helfen konnte.
 +
Versuche es und lass uns gerne an deinen Ergebnissen teilhaben, ich würde mich freuen ;)
 +
--[[Benutzer:Tutor: Alex|Tutor: Alex]] ([[Benutzer Diskussion:Tutor: Alex|Diskussion]]) 17:23, 31. Mai 2017 (CEST)

Aktuelle Version vom 31. Mai 2017, 21:49 Uhr

Geben Sie eine andere Schreibweise der folgenden Mengen an und prüfen Sie, welche Mengen identisch sind.

M_1 = \{x\vert x\in \mathbb{N}\wedge x+2 = 0\}

M_2 = \{x\vert x\in \mathbb{R}\wedge x^{2}+2 = 0\}

M_3 = \{x\vert x\in \mathbb{Z}\wedge x+2 = 0\}

M_4 = \{x\vert x\in \mathbb{Q}\wedge x^{2}-2 = 0\}

M_5 = \{x\vert x\in \mathbb{R}\wedge x^{2}-2 = 0\}

M_6 = \{x\vert x\in \mathbb{R}\wedge (x+2)^{2} = 0\}

Könnte man mir ein Beispiel zur anderen Schreibweise geben. Ich habe das Skript durchgearbeitet und die Videos, aber mir ist die andere Schreibweise noch nicht so klar. Ansonsten bin ich bei der Gleichheit der Mengen zur folgenden Ansicht gekommen: M4 = M5 da bei beiden x²=2 und Q und R sich nicht ausschließen. Alles andere sind nicht gleiche Mengen, da ihr Definitionsbereich es nicht zulässt.

Hallo Kissa052,
ich werde versuchen dir die erste Menge ausführlich zu beschreiben. Ziel dieser Übung ist es sich mit der Mengenschreibweise auseinanderzusetzen, vertraut zu machen und einzelne Mengen untereinander zu vergleichen. Dies machst du am besten, indem du die Elemente einer Menge beispielhaft, anhand der Vorschrift anschaust.
M_1 = \{x\vert x\in \mathbb{N}\wedge x+2 = 0\}

bedeutet: Die Menge  M_1 enthält alle Elemente (alle Zahlen)  x , für die gilt,  x \in \mathbb{N} , sprich es soll eine Zahl aus den natürlichen Zahlen gewählt werden und (das ist dieses Zeichen \wedge) die Gleichung  x+2 = 0 soll dabei erfüllt werden.
Jetzt die Frage: Kennst du ein Element / Elemente der natürlichen Zahlen, die uns diese Gleichung löst? Ich denke da gibt es keins, denn  \mathbb{N}:=\{0,1,2,3,4,...\}. Das gesuchte Element ist  -2 , jedoch ist  -2 \notin \mathbb{N} . Somit gilt:  M_1= \empty .
Zu deiner Aussage, dass  M_4 = M_5 (nicht richtig) folgenden Hinweis:
Du hast schon richtig geschlossen, dass  x^2=2 . Auch hier die Frage: Welches Element  x , löst uns diese Gleichung? (Wir müssen hier wurzelziehen, dann kommen wir schnell zu einem Problem in  \mathbb{Q} ).
Nur weil hier andere Grundmengen ( \mathbb{N} , \mathbb{Z}, \mathbb{Q} \ und \ \mathbb{R} ) verwendet worden sind, schließt das nicht zwangsweise aus, dass bspw.  M_3=M_6 gilt. (diese Behauptung ist im Übrigen richtig ;) ) Das Wort Definitonsbereich steht im Zusammenhang mit Funktionen, was ich hier nicht verwenden würde.

Hoffe, dass ich dir helfen konnte. Versuche es und lass uns gerne an deinen Ergebnissen teilhaben, ich würde mich freuen ;) --Tutor: Alex (Diskussion) 17:23, 31. Mai 2017 (CEST)