Lösung von Aufg. 6.5P (SoSe 22): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
 
Zeile 2: Zeile 2:
  
 
[[Kategorie:Geo_P]]
 
[[Kategorie:Geo_P]]
 +
 
ich versuch es mal ohne Garantie:
 
ich versuch es mal ohne Garantie:
 +
 
Satz von Pasch: Gegeben sei ein Dreieck ABC. Ferner sei eine Gerade g, die durch keinen der Eckpunkte A,B, C geht. Wenn g eine der Seiten des Dreiecks ABC schneidet, dann schneidet g genau eine weitere Seite des Dreiecks ABC.
 
Satz von Pasch: Gegeben sei ein Dreieck ABC. Ferner sei eine Gerade g, die durch keinen der Eckpunkte A,B, C geht. Wenn g eine der Seiten des Dreiecks ABC schneidet, dann schneidet g genau eine weitere Seite des Dreiecks ABC.
 +
  
 
das Dreieck ABC liegt in einer Ebene, wenn man das jetzt einzeichnet, so wie es im Satz von Pasch steht, dann teilt die Gerade g dieses Dreieck in der Ebene in zwei unterschiedliche Hälften, welche sich dann auf verschiedenen Halbebenen befinden.
 
das Dreieck ABC liegt in einer Ebene, wenn man das jetzt einzeichnet, so wie es im Satz von Pasch steht, dann teilt die Gerade g dieses Dreieck in der Ebene in zwei unterschiedliche Hälften, welche sich dann auf verschiedenen Halbebenen befinden.
 +
  
 
Voraussetzung: die Gerade g schneidet eine Seite des Dreieck ABC  
 
Voraussetzung: die Gerade g schneidet eine Seite des Dreieck ABC  
 +
 
Behauptung: die Gerade g schneidet dann genau noch eine weitere Seite des Dreiecks ABC
 
Behauptung: die Gerade g schneidet dann genau noch eine weitere Seite des Dreiecks ABC
 +
 
Annahme: 1.Dreieck ABC liegt in einer Ebene, 2.und g geschnitten ABC ergibt keine leere Menge, dh g teilt ABC in zwei Halbebenen, 3. g geht durch keinen der Eckpunkte A,B,,C
 
Annahme: 1.Dreieck ABC liegt in einer Ebene, 2.und g geschnitten ABC ergibt keine leere Menge, dh g teilt ABC in zwei Halbebenen, 3. g geht durch keinen der Eckpunkte A,B,,C
 +
 +
 
Beweis.                                                                Begründung
 
Beweis.                                                                Begründung
 
1. das Dreieck ABC liegt in einer Ebene.                                Annahme 1.
 
1. das Dreieck ABC liegt in einer Ebene.                                Annahme 1.
 +
 
2. die Gerade g geschnitten ABC ergibt keine leere Menge.              Annahme 2.
 
2. die Gerade g geschnitten ABC ergibt keine leere Menge.              Annahme 2.
 +
 
3. die Gerade g geht durch keinen der Eckpunkte A,B,C.                  Annahme 3.
 
3. die Gerade g geht durch keinen der Eckpunkte A,B,C.                  Annahme 3.
 +
 
4. die Gerade g schneidet eine der Seiten des Dreiecks ABC.            wegen 2. und 3., Voraussetzung, und Annahme 2.
 
4. die Gerade g schneidet eine der Seiten des Dreiecks ABC.            wegen 2. und 3., Voraussetzung, und Annahme 2.
 +
 
5. die gerade g teilt das Dreieck ABC in zwei Halbebenen                wegen 4., Annahme 1., Annahme2., Annahme 3.
 
5. die gerade g teilt das Dreieck ABC in zwei Halbebenen                wegen 4., Annahme 1., Annahme2., Annahme 3.
5. die Gerade g schneidet genau eine weitere Seite des Dreiecks ABC    wegen 5., wegen Behauptung, und Annahme 3.--[[Benutzer:Kwd077|Kwd077]] ([[Benutzer Diskussion:Kwd077|Diskussion]]) 16:51, 23. Mai 2022 (CEST)
+
 
 +
6. die Gerade g schneidet genau eine weitere Seite des Dreiecks ABC    wegen 5., wegen Behauptung, und Annahme 3.--
 +
 
 +
[[Benutzer:Kwd077|Kwd077]] ([[Benutzer Diskussion:Kwd077|Diskussion]]) 16:51, 23. Mai 2022 (CEST)
 +
 
 +
 
 +
 
 +
Du bist auf dem richtigen Weg! Achtung: Annahmen werden nur gestellt, wenn du den Satz durch Widerspruch beweisen willst. Deine Annahme 1,3 sind teil der Vorraussetzung und deine Annahme 2 muss erst mit dem Halbebenenaxiom oder dem Punkt, dass die Gerade g durch keinen der Eckpunkte A,B,C geht begründet werden.
 +
 
 +
Der Beweis ist zwischen Punkt 5 und 6 Lückenhaft. Hier müsstest du überlegen, Welche Lagemöglichkeiten der Punkt, durch dessen Strecke g in der Vorraussetzung nicht geht, hat. Vielleicht hilft es hierbei mit konkreten Punkten (A,B,C) zu arbeiten.
 +
 
 +
Vorraussetzung wäre hier: g schneidet AB
 +
 
 +
Behauptung: g schneidet BC oder AC
 +
 
 +
--[[Benutzer:Matze2000|Matze2000]] ([[Benutzer Diskussion:Matze2000|Diskussion]]) 18:34, 28. Mai 2022 (CEST)

Aktuelle Version vom 28. Mai 2022, 17:34 Uhr

Beweisen Sie den Satz von Pasch.

ich versuch es mal ohne Garantie:

Satz von Pasch: Gegeben sei ein Dreieck ABC. Ferner sei eine Gerade g, die durch keinen der Eckpunkte A,B, C geht. Wenn g eine der Seiten des Dreiecks ABC schneidet, dann schneidet g genau eine weitere Seite des Dreiecks ABC.


das Dreieck ABC liegt in einer Ebene, wenn man das jetzt einzeichnet, so wie es im Satz von Pasch steht, dann teilt die Gerade g dieses Dreieck in der Ebene in zwei unterschiedliche Hälften, welche sich dann auf verschiedenen Halbebenen befinden.


Voraussetzung: die Gerade g schneidet eine Seite des Dreieck ABC

Behauptung: die Gerade g schneidet dann genau noch eine weitere Seite des Dreiecks ABC

Annahme: 1.Dreieck ABC liegt in einer Ebene, 2.und g geschnitten ABC ergibt keine leere Menge, dh g teilt ABC in zwei Halbebenen, 3. g geht durch keinen der Eckpunkte A,B,,C


Beweis. Begründung 1. das Dreieck ABC liegt in einer Ebene. Annahme 1.

2. die Gerade g geschnitten ABC ergibt keine leere Menge. Annahme 2.

3. die Gerade g geht durch keinen der Eckpunkte A,B,C. Annahme 3.

4. die Gerade g schneidet eine der Seiten des Dreiecks ABC. wegen 2. und 3., Voraussetzung, und Annahme 2.

5. die gerade g teilt das Dreieck ABC in zwei Halbebenen wegen 4., Annahme 1., Annahme2., Annahme 3.

6. die Gerade g schneidet genau eine weitere Seite des Dreiecks ABC wegen 5., wegen Behauptung, und Annahme 3.--

Kwd077 (Diskussion) 16:51, 23. Mai 2022 (CEST)


Du bist auf dem richtigen Weg! Achtung: Annahmen werden nur gestellt, wenn du den Satz durch Widerspruch beweisen willst. Deine Annahme 1,3 sind teil der Vorraussetzung und deine Annahme 2 muss erst mit dem Halbebenenaxiom oder dem Punkt, dass die Gerade g durch keinen der Eckpunkte A,B,C geht begründet werden.

Der Beweis ist zwischen Punkt 5 und 6 Lückenhaft. Hier müsstest du überlegen, Welche Lagemöglichkeiten der Punkt, durch dessen Strecke g in der Vorraussetzung nicht geht, hat. Vielleicht hilft es hierbei mit konkreten Punkten (A,B,C) zu arbeiten.

Vorraussetzung wäre hier: g schneidet AB

Behauptung: g schneidet BC oder AC

--Matze2000 (Diskussion) 18:34, 28. Mai 2022 (CEST)