Lösung von Aufgabe 11.2P (SoSe 23): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „Beweisen Sie Satz IX.9:<br /> Gegeben seien zwei zueinander parallele Spiegelgeraden ''a'' und ''b''. Wir betrachten die Verkettung <math>S_{a}\circ S_{b} </ma…“)
 
 
Zeile 1: Zeile 1:
Beweisen Sie Satz IX.9:<br />
+
Beweisen Sie Satz IX.2:<br />
Gegeben seien zwei zueinander parallele Spiegelgeraden ''a'' und ''b''. Wir betrachten die Verkettung <math>S_{a}\circ S_{b} </math>. Jeder Punkt ''P'' hat dabei zu seinem Bildpunkt <math>P''=S_{a}\circ S_{b}(P) </math> einen Abstand der doppelt so groß ist wie der Abstand der beiden Spiegelgeraden.<br />
+
Gegeben seien zwei Spiegelgeraden ''a'' und ''b'' mit einem gemeinsamen Schnittpunkt ''S'', sowie zwei Punkten <math>A\in a</math> und <math>B\in b</math>, die von ''S'' jeweils verschieden sind. Wir betrachten die Verkettung <math>S_{a}\circ S_{b} </math>. Für einen beliebigen Punkt P und seinen Bildpunkt <math>P''=S_{a}\circ S_{b}(P) </math> gilt: <math>\left| \angle PSP''  \right| =2\cdot\left| \angle ASB  \right|</math>.<br />
  
  

Aktuelle Version vom 2. Juli 2023, 20:59 Uhr

Beweisen Sie Satz IX.2:
Gegeben seien zwei Spiegelgeraden a und b mit einem gemeinsamen Schnittpunkt S, sowie zwei Punkten A\in a und B\in b, die von S jeweils verschieden sind. Wir betrachten die Verkettung S_{a}\circ S_{b} . Für einen beliebigen Punkt P und seinen Bildpunkt P''=S_{a}\circ S_{b}(P) gilt: \left| \angle PSP''  \right| =2\cdot\left| \angle ASB  \right|.