Lösung von Aufg. 7.2 (WS 11/12): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(Die Seite wurde neu angelegt: „Es sei <math>\ g</math> eine Gerade und <math>\ P</math> ein Punkt, der nicht zu <math>\ g</math> gehört. Beweisen Sie mittels der Axiome der Inzidenz: Es gibt g…“) |
|||
| (4 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt) | |||
| Zeile 1: | Zeile 1: | ||
Es sei <math>\ g</math> eine Gerade und <math>\ P</math> ein Punkt, der nicht zu <math>\ g</math> gehört. Beweisen Sie mittels der Axiome der Inzidenz: Es gibt genau eine Ebene <math>\ \epsilon</math>, die sowohl alle Punkte von <math>\ g</math> als auch den Punkt <math>\ P</math> enthält. | Es sei <math>\ g</math> eine Gerade und <math>\ P</math> ein Punkt, der nicht zu <math>\ g</math> gehört. Beweisen Sie mittels der Axiome der Inzidenz: Es gibt genau eine Ebene <math>\ \epsilon</math>, die sowohl alle Punkte von <math>\ g</math> als auch den Punkt <math>\ P</math> enthält. | ||
| + | '''Voraussetzung''': Gerade g, Punkt P: P <math> \notin</math> g <br /> | ||
| + | '''Behauptung''': <math> \exists!</math> Ebene E: g <math>\subseteq</math> E <math>\wedge</math> P <math>\in</math> E <br /> | ||
| + | |||
| + | '''Beweis:''' <br /> | ||
| + | |||
| + | {| class="wikitable" | ||
| + | |- | ||
| + | | 1) P <math> \notin</math> g|| Vor. | ||
| + | |- | ||
| + | | 2) <math>\exists</math> R, Q <math>\in</math> g, R<math>\neq</math> Q || Axiom I/2 | ||
| + | |- | ||
| + | | 3) nkoll(P, Q, R) || Axiom I/3, 1), 2) ''(das Axiom sagt uns nicht, dass diese drei Punkte nicht kollinear sind. Wie kann man hier anders begründen?--[[Benutzer:Tutorin Anne|Tutorin Anne]] 14:48, 29. Nov. 2011 (CET))'' Vielleicht mit der Def. kollinear in Verbindung mit (1) und (2) ? --[[Benutzer:CaroDa|CaroDa]] 15:29, 4. Jan. 2012 (CET) ''Gut--[[Benutzer:Tutorin Anne|Tutorin Anne]] 11:58, 11. Jan. 2012 (CET)'' | ||
| + | |- | ||
| + | | 4) <math> \exists!</math> E: (P, Q, R)<math>\in</math> E || Axiom I/4, 3) | ||
| + | |- | ||
| + | | 5) P <math> \in</math> E <math>\wedge</math> g <math>\subseteq</math> E || 4) ''(hier noch genauer begründen --[[Benutzer:Tutorin Anne|Tutorin Anne]] 14:48, 29. Nov. 2011 (CET))'' | ||
| + | (1) wegen Punkt P, (2) und Axiom I/5 wegen Gerade g --[[Benutzer:CaroDa|CaroDa]] 15:29, 4. Jan. 2012 (CET)''Gut!'' | ||
| + | |} q.e.d. --[[Benutzer:Wookie|Wookie]] 14:16, 28. Nov. 2011 (CET) | ||
[[Category:Einführung_Geometrie]] | [[Category:Einführung_Geometrie]] | ||
Aktuelle Version vom 11. Januar 2012, 11:58 Uhr
Es sei
eine Gerade und
ein Punkt, der nicht zu
gehört. Beweisen Sie mittels der Axiome der Inzidenz: Es gibt genau eine Ebene
, die sowohl alle Punkte von
als auch den Punkt
enthält.
Voraussetzung: Gerade g, Punkt P: P
g
Behauptung:
Ebene E: g
E
P
E
Beweis:
1) P g |
Vor. |
2) R, Q g, R Q |
Axiom I/2 |
| 3) nkoll(P, Q, R) | Axiom I/3, 1), 2) (das Axiom sagt uns nicht, dass diese drei Punkte nicht kollinear sind. Wie kann man hier anders begründen?--Tutorin Anne 14:48, 29. Nov. 2011 (CET)) Vielleicht mit der Def. kollinear in Verbindung mit (1) und (2) ? --CaroDa 15:29, 4. Jan. 2012 (CET) Gut--Tutorin Anne 11:58, 11. Jan. 2012 (CET) |
4) E: (P, Q, R) E |
Axiom I/4, 3) |
5) P E g E |
4) (hier noch genauer begründen --Tutorin Anne 14:48, 29. Nov. 2011 (CET))
(1) wegen Punkt P, (2) und Axiom I/5 wegen Gerade g --CaroDa 15:29, 4. Jan. 2012 (CET)Gut! |
R, Q
Q 
