Lösung von Aufgabe 3.2 S (SoSe 12): Unterschied zwischen den Versionen
Hauler (Diskussion | Beiträge) (→Lösungsvorschlag 2:) |
|||
Zeile 18: | Zeile 18: | ||
b) Genau dann wenn sich die Diagonalen eines Vierecks <math>\overline{ABCD}</math> halbieren, ist es ein Parallelogramm.<br /> | b) Genau dann wenn sich die Diagonalen eines Vierecks <math>\overline{ABCD}</math> halbieren, ist es ein Parallelogramm.<br /> | ||
− | c) Ein Viereck <math>\overline{ABCD}</math>, dessen Diagonalen sich gegenseitig halbieren, ist ein Parallelogramm. --[[Benutzer:Goliath|Goliath]] 15:38, 3. Mai 2012 (CEST) | + | c) Ein Viereck <math>\overline{ABCD}</math>, dessen Diagonalen sich gegenseitig halbieren, ist ein Parallelogramm. --[[Benutzer:Goliath|Goliath]] 15:38, 3. Mai 2012 (CEST) <be/> |
+ | Coole Sache. Wenn man sagt Parallelogramm, dann schließt das ja nicht aus, dass es auch ein Quadrat oder eine Raute oder so ist.--[[Benutzer:RitterSport|RitterSport]] 20:46, 6. Mai 2012 (CEST)<br/> | ||
Version vom 6. Mai 2012, 19:46 Uhr
Aufgabe 3.2
a)Ergänzen Sie so, dass sowohl die Hin- als auch die Rückrichtung wahr sind:
Wenn ein Viereck ein/e ... ist, halbieren sich seine Diagonalen.
Wenn sich die Diagonalen eines Vierecks halbieren, so ist es ein/e ....
b)Formulieren sie eine Äquivalenz.
c)Definieren Sie die Vierecksart durch das gefundene Kriterium.
Lösungsvorschlag 1:
a)
Wenn ein Viereck ein Parallelogramm ist, halbieren sich seine Diagonalen.
Wenn sich die Diagonalen eines Vierecks halbieren, so ist es ein Parallelogramm.
b) Genau dann wenn sich die Diagonalen eines Vierecks halbieren, ist es ein Parallelogramm.
c) Ein Viereck , dessen Diagonalen sich gegenseitig halbieren, ist ein Parallelogramm. --Goliath 15:38, 3. Mai 2012 (CEST) <be/>
Coole Sache. Wenn man sagt Parallelogramm, dann schließt das ja nicht aus, dass es auch ein Quadrat oder eine Raute oder so ist.--RitterSport 20:46, 6. Mai 2012 (CEST)
Lösungsvorschlag 2:
a)
A: Viereck Parallelogramm
B: Diagonalen halbieren sich
Viereck Parallelogramm Diagonalen halbieren sich also A B
Diagonalen halbieren sich Viereck Parallelogramm also B A
b) A B
c) Wie ist die Kurzschreibweise hierfür? --Hauleri 13:26, 6. Mai 2012 (CEST)