Abstand und Anordnung (Vorlesung 15.05.2012): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(→Beweis von Satz II.3:) |
(→Der Begriff der Strecke) |
||
| Zeile 63: | Zeile 63: | ||
Übungsaufgabe (5.1). Beweisideen? | Übungsaufgabe (5.1). Beweisideen? | ||
| − | = | + | ====Aufgabe==== |
| + | Definieren Sie: | ||
| + | |||
===== Definition II.3: (Strecke, Endpunkte einer Strecke) ===== | ===== Definition II.3: (Strecke, Endpunkte einer Strecke) ===== | ||
::Es seien <math>\ A</math> und <math>\ B</math> zwei verschiedene Punkte. ... (ergänzen Sie) | ::Es seien <math>\ A</math> und <math>\ B</math> zwei verschiedene Punkte. ... (ergänzen Sie) | ||
Version vom 15. Mai 2012, 12:34 Uhr
Inhaltsverzeichnis |
Der Abstand zweier Punkte
Die ersten beiden Abstandsaxiome
Axiom II.1: (Abstandsaxiom)
- Zu je zwei Punkten
und
gibt es eine eindeutig bestimmte nicht negative reelle Zahl
mit
.
Definition II.1: (Abstand)
- Der Abstand zweier Punkte
und
ist die Zahl, die nach dem Abstandsaxiom den Punkten
und
zugeordnet werden kann.
Schreibweise:
.
Axiom II.2:
- Für zwei beliebige Punkte
und
gilt
.
Aufgabe
Konstruieren Sie jeweils die drei Punkte
und
für die gilt:
a)
= 4,
= 3,
= 5
b)
= 2,
= 3,
= 5
c)
= 1,
= 2,
= 5
Das Axiom der Dreiecksungleichung
Axiom II/3: (Dreiecksungleichung)
- Für drei beliebige Punkte
und
gilt:
- Für drei beliebige Punkte
- Falls
, dann ist eine der folgenden Gleichungen erfüllt:
- Falls
- Ist umgekehrt eine dieser drei Gleichungen erfüllt, so sind
,
und
kollinear.
Definitionen und Sätze
Definition II.2: (Zwischenrelation)
- Ein Punkt
liegt zwischen zwei Punkten
und
, wenn gilt:
- Ein Punkt
-
und
,
und
sind paarweise verschieden.
-
- Schreibweise:
- Schreibweise:
Unmittelbar einsichtig sind die folgenden beiden Sätze:
Satz II.1
- Aus
folgt
.
- Aus
Beweis von Satz II.1
- Beweis: trivial (Der Leser überzeuge sich davon.)
Satz II.2:
- Aus
folgt
.
- Aus
Beweis von Satz II.2
- Beweis: trivial (Der Leser überzeuge sich davon.)
Satz II.3
- Es sei
mit
sind paarweise verschieden.
Dann gilt genau eine der Zwischenrelationen, d.h. entweder
oder
oder
.
- Es sei
Beweis von Satz II.3:
Übungsaufgabe (5.1). Beweisideen?
Aufgabe
Definieren Sie:
Definition II.3: (Strecke, Endpunkte einer Strecke)
- Es seien
und
zwei verschiedene Punkte. ... (ergänzen Sie)
- Es seien
Definition II.4: (Länge einer Strecke)
- Es seien
und
zwei verschiedene Punkte. ... (ergänzen Sie)
- Es seien
Halbgeraden bzw. Strahlen
Definition II.5: (Halbgerade, bzw. Strahl)
- Definition (Halbgerade
): (ergänzen Sie)


