Lösung von Zusatzaufgabe 6.1 S (SoSe 12): Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (→Bemerkungen M.G.) |
*m.g.* (Diskussion | Beiträge) (→Bemerkungen M.G.) |
||
| Zeile 28: | Zeile 28: | ||
| (1) || <math>\exist X, Y : X \in g \wedge Y \in g</math> || Axiom I/2: Auf jeder Geraden gibt es zwei verschiedene Punkte. | | (1) || <math>\exist X, Y : X \in g \wedge Y \in g</math> || Axiom I/2: Auf jeder Geraden gibt es zwei verschiedene Punkte. | ||
|- | |- | ||
| − | | (2) || | + | | (2) ||<math>\operatorname{nkoll} (X,Y,P)</math>||Nach Voraussetzung gehört <math>P</math> nicht zu <math>g</math> |
|} | |} | ||
[[Category:Einführung_S]] | [[Category:Einführung_S]] | ||
Version vom 7. Juni 2012, 07:25 Uhr
Zusatzaufgabe 6.1
Es sei
eine Gerade und
ein Punkt, der nicht zu
gehört. Beweisen Sie mittels der Axiome der Inzidenz: Es gibt genau eine Ebene
, die sowohl alle Punkte von
als auch den Punkt
enthält.
Lösungsvorschlag von Quadratisch , Praktisch, Gut
Voraussetzung: Gerade g, Punkt P, P nicht Element von g
Behauptung: Es existiert eine Ebene, die sowohl g als auch P enthält.
| Schritt | Warum darf ich den Schritt machen? |
|---|---|
| (1)Es existiert X,Y.X,Y Element g | I.2 |
| (2)nkoll(X,Y,P) | (1), Vor. |
| (3)Es existiert eine Ebene.X,Y,P Element der Ebene | (2), I.4 |
Durch Axiom I.4 wären Existenz (Zu drei nicht kollinearen Punkten gibt es genau eine Ebene...) und Eindeutigkeit (... genau eine Ebene...) bewiesen.
--RitterSport 20:02, 4. Jun. 2012 (CEST)
Bemerkungen M.G.
Der Beweis ist soweit korrekt aber noch nicht ganz vollständig. Das Axiom I/4 sichert uns nur, dass Ihre Punkte
in der Ebene
liegen. Wir sollen aber zeigen, dass alle Punkte der Geraden
in
liegen.
Hier noch mal Ihr Beweis mit LaTex Tags. Schritt 4 wäre noch zu ergänzen.
| Nr. | Schritt | Warum darf ich den Schritt machen? |
|---|---|---|
| (1) | |
Axiom I/2: Auf jeder Geraden gibt es zwei verschiedene Punkte. |
| (2) | ![]() |
Nach Voraussetzung gehört nicht zu
|

nicht zu 
