Lösung von Aufgabe 9.3 S: Unterschied zwischen den Versionen
*m.g.* (Diskussion | Beiträge) (→Bemerkung M.G.) |
*m.g.* (Diskussion | Beiträge) (→Bemerkung M.G.) |
||
Zeile 12: | Zeile 12: | ||
--[[Benutzer:Nummero6|Tchu Tcha Tcha]] 16:56, 20. Jun. 2012 (CEST) | --[[Benutzer:Nummero6|Tchu Tcha Tcha]] 16:56, 20. Jun. 2012 (CEST) | ||
===Bemerkung M.G.=== | ===Bemerkung M.G.=== | ||
− | Richtig, Eindeutigkeitsbeweise führt man in der Regel indirekt. Wir nehmen an es gäbe zwei Geraden <math>s_1</math> und <math>s_2</math>, die beide durch <math>P</math> gehen und senkrecht auf <math>g</math> stehen. Senkrecht stehen bedeutet, dass rechte Winkel gebildet werden. Jeder rechte Winkel hat das maß 90° ... . Sie haben den Beweis schon völlig verstanden. Was Ihnen wahrscheinlich Schwierigkeiten bereitet ist das Aufschreiben desselben. Hilfe: Führen Sie auf <math>g, s_1</math> und <math>s_2</math> geeignete Punkte ein. Dann können Sie die entstehenden rechten Winkel besser bezeichnen. Danach wird Ihnen das Winkelkonstruktionsaxiom wacker zur Seite stehen.--[[Benutzer:*m.g.*|*m.g.*]] 10:04, 24. Jun. 2012 (CEST) | + | Richtig, Eindeutigkeitsbeweise führt man in der Regel indirekt. Wir nehmen an, es gäbe zwei Geraden <math>s_1</math> und <math>s_2</math>, die beide durch <math>P</math> gehen und senkrecht auf <math>g</math> stehen. Senkrecht stehen bedeutet, dass rechte Winkel gebildet werden. Jeder rechte Winkel hat das maß 90° ... . Sie haben den Beweis schon völlig verstanden. Was Ihnen wahrscheinlich Schwierigkeiten bereitet, ist das Aufschreiben desselben. Hilfe: Führen Sie auf <math>g, s_1</math> und <math>s_2</math> geeignete Punkte ein. Dann können Sie die entstehenden rechten Winkel besser bezeichnen. Danach wird Ihnen das Winkelkonstruktionsaxiom wacker zur Seite stehen.--[[Benutzer:*m.g.*|*m.g.*]] 10:04, 24. Jun. 2012 (CEST) |
+ | |||
==Lösung von Ritterport== | ==Lösung von Ritterport== | ||
<br /><u>'''Idee:''' (Wir sind in einer Ebene E)<br /></u> | <br /><u>'''Idee:''' (Wir sind in einer Ebene E)<br /></u> |
Version vom 24. Juni 2012, 09:05 Uhr
Inhaltsverzeichnis |
Die Aufgabe
Satz
Es sei eine Gerade der Ebene . Ferner sei ein Punkt auf . In der Ebene gibt es genau eine Gerade , die durch geht und senkrecht auf steht.
Beweisen Sie den Satz.
Lösungsversuch Nummero6/Tchu Tcha Tcha:
Eindeutigkeitsbeweis..Beweisen durch Widerspruch!
Annahme: Es gibt 2 nicht identische Geraden, die durch den Punkt P gehen und g senkrecht schneiden.
Fortsetzung folgt...
Könnte man hier nicht einen Widerspruchsbeweis mit dem Winkelkonstruktionsaxiom führen??
Letztendlich wird dann gesagt, dass es ein Widerspruch zu diesem Axiom wäre, da es nur genau einen Strahl in der Halbebene gibt, der das Maß 90 hat..?!?
die 2 Geraden müssten identisch sein, also Widerspruch zur Annahme! Behauptung stimmt..
--Tchu Tcha Tcha 16:56, 20. Jun. 2012 (CEST)
Bemerkung M.G.
Richtig, Eindeutigkeitsbeweise führt man in der Regel indirekt. Wir nehmen an, es gäbe zwei Geraden und , die beide durch gehen und senkrecht auf stehen. Senkrecht stehen bedeutet, dass rechte Winkel gebildet werden. Jeder rechte Winkel hat das maß 90° ... . Sie haben den Beweis schon völlig verstanden. Was Ihnen wahrscheinlich Schwierigkeiten bereitet, ist das Aufschreiben desselben. Hilfe: Führen Sie auf und geeignete Punkte ein. Dann können Sie die entstehenden rechten Winkel besser bezeichnen. Danach wird Ihnen das Winkelkonstruktionsaxiom wacker zur Seite stehen.--*m.g.* 10:04, 24. Jun. 2012 (CEST)
Lösung von Ritterport
Idee: (Wir sind in einer Ebene E)
Es gibt einen Punkt K, der nicht auf g liegt. Die Gerade s geht durch K und P. (Axiom I.1)
Also: g n s = {P}
Winkel gPs hat das Maß 90 (Es gibt rechte Winnkel, Axiom W.4 --> Alle vier Winkel um P haben das Maß 90)
--> Eindeutigkeit und Existenz bewiesen. (!?)
--RitterSport 19:50, 23. Jun. 2012 (CEST)