Benutzer:HecklF: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 9_3_SoSe_2012)
Zeile 1: Zeile 1:
 +
=Dem größten Winkel liegt die längste Seite gegenüber=
 +
<ggb_applet width="1200" height="500"  version="4.0" ggbBase64="UEsDBBQACAAIAO+s6EAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAO+s6EAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vxbb+PGFX5OfsVUDRZbYC3PnUPHTiA7CLqoc0F2mwTFAgFFjiSuKVIhKVs2/F/60j+QoI99y3t+U8/MkBJ1sWxaVrqud63hDA/ncr5zvnOGo93jz2fjBF3qvIiz9KRDuriDdBpmUZwOTzrTcnCgOp9/9vHxUGdD3c8DNMjycVCedLiRjKOTDu4zRgQhB0r43gEfcHagfC0PKGOhHPTJQIZeB6FZER+l2dfBWBeTINRvwpEeB+dZGJR24FFZTo4OD6+urrr1UN0sHx4Oh/3urIg6CKaZFied6uIIult66IpZcYoxOfzxq3PX/UGcFmWQhrqDzBKm8Wcff3R8FadRdoWu4qgcwYKZoh000vFwBIvyOO+gQyM1AY1MdFjGl7qAZxtVu+hyPOlYsSA19z9yVyiZr6eDovgyjnQOCuoyIaiixPc9goU0Y2R5rNOykiXVmId1b8eXsb5y3ZorOyI8VGZZ0g9Mj+j2FlFMMXplCuIKCoWU7hZ2bZi5grqCu0I4Ge4e506UOxnuZDjroMu4iPuJPukMgqQAFcbpIAf45vWivE60nU/VsFg9eQVrKuIbEGYY7MTpHNoxfmV+Jfxyc+NweZGkMWqZT1sOWg9JmJQPH5PutFJWD8p9sj4mFXesU24Z1C38QQsVDd3CUPav/V0bkW1b5uqIrr7bgJL/IUs8Pqx95bhyD1SMjGxlPqUeF8ZhmI+Eb+yeIAHOIT0wc4GID4VHEbgDIgJxAVWikDSlh5gHNzhiSCEjRxiy3iEUfHDPdiaRgM5MqwdOiQgMxJFgiFin4ghcCVnHBCelDCSEQAIeMsMTarpgEnEJNaYQhzkan/QICDJ4EOowPEWMIGYeJh6iEknTH+HG16UyU4cuKZIYSWI6BLcGl3buDPIKMbMaWakrTifTcklF4TiqL8tsMscCpIGQFrTnCGqJFT86ToK+TiBSvDFIInQZJMYj7ECDLC1RDSJ1bcM8mIzisHijyxKeKtD74DI4D0o9+xKki3psKxtmafFtnpVnWTIdpwVCYZbg+ZyzhDSu6XzWUGGNG7x5QzRuyMa1t3HcDO6gaaFh/CwvavEgil4biQU1gCa/SZPr01wHF5MsXl7G8aENOsd6GiZxFAfp92CsZhSjF7SIQYav6hgkPL+eSZZHb64LMGE0+4fOM9At62Lle9x3PwoC63V1x/O7XCnwC/djHCgMjO9J3JXMEyC53FBLYu6G05dzWIKZXqxwmBt3blReF6dZsmiyiz4LJuU0tzkDMGJuVtJLh4m2hmE5FgJyeNHPZm8qinZ9vb2eQA27GfSHVtkICIEKmPCwKvuutDJmanMpbGWwlcC1icXR/D7xqZWwZd+VVgps1k2tWiqpl0lwPUxcuOymUzlLTVHG4k14n6ZxeV5Xyji8qJZK3ANfT8d9Pbeb5T7JU/V5fLhiWMcXOk91UtkxgDnNpoVzy4aJRzqMx1B1NyqVBAauv8MEXGukh7muJ57YfMwpzN7FTQtda7ZdfZln49fp5VuwhZUJHB/WszwuwjyeGJtDfeD+C72wqiguAggdUfM543iw9NCECFBPaVQDLjktRxmA/WWSSUArAjqBZis+HgdphFIbcl6nJegOuKuzoMEACGXWA1igF+CTa3tpl5BNy1qg5+Zc9WacOdFjSN5QaW3Xmv8cw57t3YCFsv57GG0eTN39hTXAYqLYrsRSSCU8qobvv58bsQmkQ1f0XREkk1Fg8spK30lwrfMlBOxoX2XRBrgKNHOPouuTzoG9uHF5v8t7zXKMjy6RuWtdARqsz2liTdffWp1s0vOqck/bKPf06ZVLqOMZW1Y882j9Bim4lRu11BPnthOtnce7BcHFBLqzRLkUdGpkZJdYZJ4KmG36PHt6fTYZ+X+uS9GFxMMok3bNJm8PZp5cD7N0xdBPHZmcQUEr9lgyeWDqBEIhcWKBE+tDAYlLeJ87uAFrgOZdLce0EnKsC9hJFjbwllWItRd/jaNI2/z6cDv2yxnRw8CHbaML2phvMADSxgDuNuFCD01tPtHg6Y14+zoeTboHzgwd7fqe3/wRzjy9LsWk0axW05WHQ6t/Tt0jhcsh4vEkicO4nNtjYjxnHhVBLeuJwoXWE5OhfZO+zYO0MK9+nEwjAXkgTP0PC6ZvBoNClxYVsxe/XuxR7kNxAaKjl5sqiv6/ABV+WEBt86c6i7Ex86bZ13OAYTmWnMV5mOiVUHLmYsTpWgyJtscJQCYO54hF9yB6L9UPt8d5/HgwNwK1CPBiM1LxUKeXMDPYlyM0w9Vb62tcZ011y4zMjYRUTTekkQRAgpHHM9Sr5Xu1VI8aI+1SwZa4GPVYNUSPz/2/J2pm32hG5nVJPIjD7ejftTmJnAH01/PmF8EkKz51t1vl0NWDuzn5Bot49DalQcXMEat8KBMLzH2FPaEIUaSiZdJlni99yRmDJgphdg+Z35uKNDdmfrWKVzHT23FaJWK9q9uO9+a2DQ7epG6DIesKX0AuQzlRgA3xuIVBdTmRhCvK4QbxsfdsCdu+3tpuADazP1uzg9///RPZbgr2BcocaCtv+oCZTWsgukr6SikPS+VRDJq/L6G/z6U3WAvB1eszTHfN5x8HcZCHC08V9c4wSbKr7/Qg0TOLwS6AzQOsheouxwUAaEvA6L2AyQ8MsAYNK+fC/jOHc33r/fuvrWD8dRVE0qVMMsaFTyUDElN8VxDvfIVC8DpLPxjA6rXH8wOwItDendT5SysAf1n3QoEZ5+YwnmCfMfkhAfghQKRnkxyGMausFPBWz0rIyOHGSefFz9Os/PQT9EOco3foKksSncJFX1/puNDpEbp9Z9d6i14My0+h1tclVE5cbd7cv0WfuK7s8MsQljBeZ3nwB+dBe0h14uI8eKt/XNZYdbpZ6DwezA+z7bkW7tTpSPV8UQZ5ad+HI+OafldIJoTC1KceZcSzjiq6ElJYAlUqOKRKSy8r74eHrsBzavEAYKJpHo6g/MF8EaWY5NNw9Kc2qqe7pqCD54ILgTyWKsKpFBj2epDSVsAQzHxCIZdlkK9K0Q4YtgJML02D0VgfASTWG5L23sB23sz/RJ4TKJ4nCSROEnYRsJOwoPCuxD40Ug6RmPtC3gnKkir7WZboYPHyfLAaHBqqe0g82F1/i4gtiTv1kWqbesNgYuG0bc7JwbH1Ubt1D9d3Ey1XvmdfX1eLyWcfqpfax9opZbQXlTyhr21QCtv+nqSplL+5k/ML2/JFrmMdXqDe6VlLy9mLku45RXycityL4cX3PR7qT0U4yuOyRGTdfjYyPF9l+H6ZB0ObFV1m5vP27PQWimA6sJXe7RGqtpltWJ9/uK9wn57zOWdCUU9Kzny/2sqwLlA+UD31PelhodjjOP/9ftx8fxZMaZuIMMx/+08aTdPhg+1XbM5QwFZfNvP1v7yClt4szsbWsM3nOWxOgqSNEYtdjfj9czJiiTEk8oQITD0lq68hcEU8jypmN6HCb5dNyhWsbt9FOimDn2idSVbbrRaQyF0huXhGkAgqsTnQIZ7gQC/V12x8yYXwIbu0n3fnkhsh8VYgeUmsp5zr8Tgw+y7yyu6+0gudBJFTXxFYN/rkxZ8Jhie+0+EotfEituHiuzbwebvClzwb+GhXeYoxxZX0YYdWH9pDWJDcJ5wLLKnyuPe4uHCxl7iQ7i8uMLz15d6WzIa1zIyTvajmyXijoRrsjp4Y81qoZhEyNyhmo8+rFZ+vWJigd7DUYV2lbfxYfbhHfXugYewLrgSXEvwW136saB0rqc8Ib0fD/mYaPg2KuLiy7FsE5U0bRPxdEXky3/8jmJVQ5lEPSykUp/UxulIKN/7c/eprK32M90IfT5YJrtMHJAmPZFbaklnTvajmyahgg2rq866WzLpBMZuPGfBahlsfJ7j8tmJas6GephF8Ftk4LqFck3SZcKtjBryry2fPxuU3k7D5qpTwILvyzNEY7MB93PJ9N1k9KHpJLRG/ZFCAm1wF4Uibo6Pe9Ld/6nRBza/m+bD9Hgbo9jIuf/uXgda9LDmp3pnUwLuqAdtdtQG6xYHSZqAnzwno5qZH1ThL2O4oLikB2ueeVI/j9mwvBPZke5ImgbmVM8Ueye28JbdP9qKaJ2OYpmrcESSn4lHcvkExm6lh9ZCycSYJ/nwzNbTwfZYH0wJmdmO6buPTO59UPhuf9rvc94RPKfex+R5R9Z1J0vU4xsz8BwOeIEypO1Pow+Y/o7P/RLX6/xY++y9QSwcIAGqecGIMAAAMQgAAUEsBAhQAFAAIAAgA76zoQNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACADvrOhAAGqecGIMAAAMQgAADAAAAAAAAAAAAAAAAABdAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAPkMAAAAAA==" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
 +
 
=Aufgabe 9_3_SoSe_2012=
 
=Aufgabe 9_3_SoSe_2012=
 
<ggb_applet width="1000" height="500"  version="4.0" ggbBase64="UEsDBBQACAAIABOg2kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAToNpAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVa4XLjthH+fXkKDJvJpFNbAgiQFO/ky/iSXusZJ3dTX9NM56YdiIQonChSIUFbvrkXyFPkTx+j//ImfZIuAFIiJcsnWbYn9tgGASyxwO63ux8pDb9ZzFJ0KYpS5tmJQ3rYQSKL8lhmyYlTqfHxwPnm5RfDROSJGBUcjfNixtWJw7SkjE8cdzxmGPujY+5H+JjFjB+PhCDHAY2Yz/iAiiByEFqU8nmW/8BnopzzSFxEEzHj53nElVE8UWr+vN+/urrqNap6eZH0k2TUW5Sxg2CbWXni1BfPYbnOTVfUiLsYk/5P35/b5Y9lViqeRcJB+giVfPnFs+GVzOL8Cl3JWE3gwNT3HTQRMpnAoQJ34KC+lpqDReYiUvJSlHBvq2sOrWZzx4jxTM8/s1coXZ7HQbG8lLEoThzco17IGPUpwTT0KPEclBdSZKqWJbXOfrPa8FKKK7usvjIamYNUnqcjrldEnz4hF7sYHemG2MaFxvftFLZjmNrGtQ2zjWdlmL2dWVFmZZiVYdRBl7KUo1ScOGOelmBCmY0LcN+yX6rrVJj91AOr05MjOFMpP4IwxYATa3MYx/hI//nwx/REv3tI0tKqimpPpY1KQr09dLoHnZQ2SllINnW63pZz+rcotQff6aDtc4Iq82v+NjTS2465rtH2D1Pos0c54rDfxMqwDg9UTrRsDR8lZqUOGBoiL9S4J8iD4PADgLmHSAhN4CIIB0Q8xDzokgHydRsgGsAEQxQNkJYjFJno8AbwjwVmMR95sJgeDSAoEQFFDHkUERNUDEEoIROYEKQuBQnPQx7cpNUTVy9BfcR86NEBYrBHHZMBAUEKN0If1LuIEkT1zSRAro98vR5hOtb9gd46LOkiHyOf6AUhrCGkbTiD/ABRfRq/NpfM5pXqmCiaxc2lyudLX4A0JKRV2rMJqpMVnw1TPhIpVIoL7UmELnmqI8IoGueZQo0TXTuWFHw+kVF5IZSCu0r0gV/yc67E4jVIl41uIxvlWfm2yNW3eVrNshKhKE/xcs95SlrX7nLX0KGtCdae8FoTfus6uFFvDjOoKgXoz4uyEedxfKYlVqkBLPkmS69fFYJP57nsHmPYN0VnKKoolbHk2Y8AVq1F2wWtapAGeVODPJ82O8mL+OK6BAijxT9FkZ84odfD7R+IsWs742LanQKHlxHXwefh7gykrOstU8RqFpdLD/GFWB02KXRktzpn5as8XQ2Z83/L56oqDH0ATYU+1GmWpMJgxKRbqM3RdJQvLupsbdd6dz2HHrY7GCXG7ghyg+tBvUzqdmRbI6O3tpTCRgYbCdygTcbLeRK6RsK0I9saKYCv3Vp9VNIck+BGjSxNRsNOHTdNttLg15W+yqQ6bzpKRtP6qMTe8EM1G4klhLprkvtac9hfw9hwKopMpDWkwZlVXpU2Qltoj0UkZ9C1E7VJuHbX32EDdjQWSSGajaeGmlmDmVncBuvGsFnqdZHPzrLLd4CFtQ0M+80uh2VUyLnGHBpBGZiKFapiWXKoInH7Ph2DcPRIVwswj9Kmgeis1CQHZ79Ocx+8FUNmgWEdf6mYAd9CymDMwHRp67eGyGmjonz0AZLbsv7Z+ZXXQGksjUYT9bUwt5Nw741gNLDl6XzCNROszZLya1F0DGWUfZ/H6+YD71iNSsz1Atr/cyEsdOxx4GIOC5qI6yQy8EiJFvquAELeqAd6+9GyfMtytSV0GHZStx1d8yUAzBrxc+b8N9k0aBfdK4v+jo1GaI8OjNlIL7gfs0X5bMazGGWGA51D4nFWJZljDUXEiTWhNU+lmqnELlYvseEDncWW9k12RvQ2++O7W39lwWNS4464PX/QLTPanOCXwPPC1s9gPSUrYAtTeCYqTd1QdYUwF3+VcSwMU7Ql6+fM3lLaPCln81RGUm1AdzEvYD2Njtoa78RCwYZg4sT56ucqVy++RG/ReyRLBf+FzOD/WACUivcI7iigq0mPGMnEdN5W2VRL8moM/5Pel3YRo7jrJOA5qzixam93VJeW7J97DnCjLM/5O/GTHVsBxrC6UhRyvCTxpohjpzF8fT88dxfqrY4IpLHAemyDuABCgLPQDgBoO9A+7zd3zW8/XlygPezvHmr/EfrfL7+iB42ne3YEpDXciTlvb090bDqChy7Bs6XJuDEpbLYSG2TjcTLSm/G4FEqf1XVt/qGef2vGAsKqHWvGLqJJIZVCZL9jjw489pbwvnd4rYzj07A2Dt3ZOK+ACf723yyugKVtGujGCKVrEfrnUidVoL9KikKnzURkvFom2gtV8Emqs+rpv/6kk7AeTOD6COL6DwTDCmUe81Kv8umrVL3QckfJJ3SCQqxFZap6uycAemgCeDJxz4DNrJVgG/Z+N+y3RX2Xu7wpgGgnecbT7Swm2eAw0R4cJvociWy55oFZzA3s5bphN2CssIfJxrPk/ROXrgOMY9fsHm0Y/PR2g3eJ++mBz0E3OIO49tHdtL8PWo97lAZ+yDzfYwPPH4SBrREukHyXBq4bhsEgxCH2HoDy/41f3xwrpxuui293XQErNY6JHyCJEex2XrqY/j0EE5gZd8xcE0Fwi+9S7DHKPMKoUWfMH7rYZx5mzNdvyR7oAcFYPtWoOcuA55fCvFfYfFsyFWKuX1O9yd4VPCv1R2Hd/Lw7YRBPjjAs2VQY7s2m3N3IAlsjC1+TPx5BUf+HzKYindpXPlPjGr6Q+UzP7cn42aGxMn4qBV8T/aBd2oOm4ofdiu/fjeiPHwTA4jEY7x4AbjPeHUHsrYH4u6qIJoDUU/iroBS8N28XLkWR/vafarxGgQU0fxEFj/VF+WLJeddIs11n+YYiFpWSSW+fQPAODYTJUwkEYL6dOPBtHLDeoDO8I/O9ge+e1m/tNmp4uQffLQ9kXw/njlX13lK8t9Tu40cq3runrMmTS1lNzWUs2Lvm0t3Slb9ec12ouWfZRwn2/2jKLOSYsx7ZJ7n4hyYX+VSSi66y7SwS0ia7hN2fuxVZ+SCInTxokbUfmjDP3Rmx7SK7I2qDNdRCgZyLYo6SZXEsNwvkHggODkXw9KkgmPVYhw/WNNFfw/XW8ng7gD88CIDvzbht3NaZ9o7kkO2G28FN2fY9+pqa5jsxlpk9LgBYZNNCRBO1T+YdHIrbD0/xEw1C2lCtXyl46w86d0Pw9MmlYNe1KdjD+3/ssSOMwzUYvxJXQuqMe1qNExCDq7BH9fv8/EJ3XEzcfWAc7g7jrV8h0Oz0kSCqv855K0bd3voH3c0r5M4zyFaW0G9/38V8raz+jvTL/wNQSwcIL1U0zJoJAADALQAAUEsBAhQAFAAIAAgAE6DaQEXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAToNpAL1U0zJoJAADALQAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAADIKAAAAAA==" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />
 
<ggb_applet width="1000" height="500"  version="4.0" ggbBase64="UEsDBBQACAAIABOg2kAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgACAAToNpAAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbNVa4XLjthH+fXkKDJvJpFNbAgiQFO/ky/iSXusZJ3dTX9NM56YdiIQonChSIUFbvrkXyFPkTx+j//ImfZIuAFIiJcsnWbYn9tgGASyxwO63ux8pDb9ZzFJ0KYpS5tmJQ3rYQSKL8lhmyYlTqfHxwPnm5RfDROSJGBUcjfNixtWJw7SkjE8cdzxmGPujY+5H+JjFjB+PhCDHAY2Yz/iAiiByEFqU8nmW/8BnopzzSFxEEzHj53nElVE8UWr+vN+/urrqNap6eZH0k2TUW5Sxg2CbWXni1BfPYbnOTVfUiLsYk/5P35/b5Y9lViqeRcJB+giVfPnFs+GVzOL8Cl3JWE3gwNT3HTQRMpnAoQJ34KC+lpqDReYiUvJSlHBvq2sOrWZzx4jxTM8/s1coXZ7HQbG8lLEoThzco17IGPUpwTT0KPEclBdSZKqWJbXOfrPa8FKKK7usvjIamYNUnqcjrldEnz4hF7sYHemG2MaFxvftFLZjmNrGtQ2zjWdlmL2dWVFmZZiVYdRBl7KUo1ScOGOelmBCmY0LcN+yX6rrVJj91AOr05MjOFMpP4IwxYATa3MYx/hI//nwx/REv3tI0tKqimpPpY1KQr09dLoHnZQ2SllINnW63pZz+rcotQff6aDtc4Iq82v+NjTS2465rtH2D1Pos0c54rDfxMqwDg9UTrRsDR8lZqUOGBoiL9S4J8iD4PADgLmHSAhN4CIIB0Q8xDzokgHydRsgGsAEQxQNkJYjFJno8AbwjwVmMR95sJgeDSAoEQFFDHkUERNUDEEoIROYEKQuBQnPQx7cpNUTVy9BfcR86NEBYrBHHZMBAUEKN0If1LuIEkT1zSRAro98vR5hOtb9gd46LOkiHyOf6AUhrCGkbTiD/ABRfRq/NpfM5pXqmCiaxc2lyudLX4A0JKRV2rMJqpMVnw1TPhIpVIoL7UmELnmqI8IoGueZQo0TXTuWFHw+kVF5IZSCu0r0gV/yc67E4jVIl41uIxvlWfm2yNW3eVrNshKhKE/xcs95SlrX7nLX0KGtCdae8FoTfus6uFFvDjOoKgXoz4uyEedxfKYlVqkBLPkmS69fFYJP57nsHmPYN0VnKKoolbHk2Y8AVq1F2wWtapAGeVODPJ82O8mL+OK6BAijxT9FkZ84odfD7R+IsWs742LanQKHlxHXwefh7gykrOstU8RqFpdLD/GFWB02KXRktzpn5as8XQ2Z83/L56oqDH0ATYU+1GmWpMJgxKRbqM3RdJQvLupsbdd6dz2HHrY7GCXG7ghyg+tBvUzqdmRbI6O3tpTCRgYbCdygTcbLeRK6RsK0I9saKYCv3Vp9VNIck+BGjSxNRsNOHTdNttLg15W+yqQ6bzpKRtP6qMTe8EM1G4klhLprkvtac9hfw9hwKopMpDWkwZlVXpU2Qltoj0UkZ9C1E7VJuHbX32EDdjQWSSGajaeGmlmDmVncBuvGsFnqdZHPzrLLd4CFtQ0M+80uh2VUyLnGHBpBGZiKFapiWXKoInH7Ph2DcPRIVwswj9Kmgeis1CQHZ79Ocx+8FUNmgWEdf6mYAd9CymDMwHRp67eGyGmjonz0AZLbsv7Z+ZXXQGksjUYT9bUwt5Nw741gNLDl6XzCNROszZLya1F0DGWUfZ/H6+YD71iNSsz1Atr/cyEsdOxx4GIOC5qI6yQy8EiJFvquAELeqAd6+9GyfMtytSV0GHZStx1d8yUAzBrxc+b8N9k0aBfdK4v+jo1GaI8OjNlIL7gfs0X5bMazGGWGA51D4nFWJZljDUXEiTWhNU+lmqnELlYvseEDncWW9k12RvQ2++O7W39lwWNS4464PX/QLTPanOCXwPPC1s9gPSUrYAtTeCYqTd1QdYUwF3+VcSwMU7Ql6+fM3lLaPCln81RGUm1AdzEvYD2Njtoa78RCwYZg4sT56ucqVy++RG/ReyRLBf+FzOD/WACUivcI7iigq0mPGMnEdN5W2VRL8moM/5Pel3YRo7jrJOA5qzixam93VJeW7J97DnCjLM/5O/GTHVsBxrC6UhRyvCTxpohjpzF8fT88dxfqrY4IpLHAemyDuABCgLPQDgBoO9A+7zd3zW8/XlygPezvHmr/EfrfL7+iB42ne3YEpDXciTlvb090bDqChy7Bs6XJuDEpbLYSG2TjcTLSm/G4FEqf1XVt/qGef2vGAsKqHWvGLqJJIZVCZL9jjw489pbwvnd4rYzj07A2Dt3ZOK+ACf723yyugKVtGujGCKVrEfrnUidVoL9KikKnzURkvFom2gtV8Emqs+rpv/6kk7AeTOD6COL6DwTDCmUe81Kv8umrVL3QckfJJ3SCQqxFZap6uycAemgCeDJxz4DNrJVgG/Z+N+y3RX2Xu7wpgGgnecbT7Swm2eAw0R4cJvociWy55oFZzA3s5bphN2CssIfJxrPk/ROXrgOMY9fsHm0Y/PR2g3eJ++mBz0E3OIO49tHdtL8PWo97lAZ+yDzfYwPPH4SBrREukHyXBq4bhsEgxCH2HoDy/41f3xwrpxuui293XQErNY6JHyCJEex2XrqY/j0EE5gZd8xcE0Fwi+9S7DHKPMKoUWfMH7rYZx5mzNdvyR7oAcFYPtWoOcuA55fCvFfYfFsyFWKuX1O9yd4VPCv1R2Hd/Lw7YRBPjjAs2VQY7s2m3N3IAlsjC1+TPx5BUf+HzKYindpXPlPjGr6Q+UzP7cn42aGxMn4qBV8T/aBd2oOm4ofdiu/fjeiPHwTA4jEY7x4AbjPeHUHsrYH4u6qIJoDUU/iroBS8N28XLkWR/vafarxGgQU0fxEFj/VF+WLJeddIs11n+YYiFpWSSW+fQPAODYTJUwkEYL6dOPBtHLDeoDO8I/O9ge+e1m/tNmp4uQffLQ9kXw/njlX13lK8t9Tu40cq3runrMmTS1lNzWUs2Lvm0t3Slb9ec12ouWfZRwn2/2jKLOSYsx7ZJ7n4hyYX+VSSi66y7SwS0ia7hN2fuxVZ+SCInTxokbUfmjDP3Rmx7SK7I2qDNdRCgZyLYo6SZXEsNwvkHggODkXw9KkgmPVYhw/WNNFfw/XW8ng7gD88CIDvzbht3NaZ9o7kkO2G28FN2fY9+pqa5jsxlpk9LgBYZNNCRBO1T+YdHIrbD0/xEw1C2lCtXyl46w86d0Pw9MmlYNe1KdjD+3/ssSOMwzUYvxJXQuqMe1qNExCDq7BH9fv8/EJ3XEzcfWAc7g7jrV8h0Oz0kSCqv855K0bd3voH3c0r5M4zyFaW0G9/38V8raz+jvTL/wNQSwcIL1U0zJoJAADALQAAUEsBAhQAFAAIAAgAE6DaQEXM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAAToNpAL1U0zJoJAADALQAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAADIKAAAAAA==" showResetIcon = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "false" />

Version vom 8. Juli 2012, 20:40 Uhr

Inhaltsverzeichnis

Dem größten Winkel liegt die längste Seite gegenüber

Aufgabe 9_3_SoSe_2012

Das Innere eines Dreiecks

Seien ABC drei nichtkollineare Punkte der Ebene \epsilon. Das Innere des Dreiecks ABC kann mittels folgender Applikation dargestellt werden:


--Flo60 22:05, 15. Jun. 2012 (CEST)

Was ist das denn?


--Flo60 21:29, 6. Mai 2012 (CEST)

TSV wunderbar