Lösung von Aufgabe 11.2P (SoSe 12): Unterschied zwischen den Versionen
Zeile 6: | Zeile 6: | ||
durch spiegelung von abc an g erhält man ebenfalls a´´´b´´´c´´´<br />--[[Benutzer:Studentin|Studentin]] 23:47, 3. Jul. 2012 (CEST)<br />liebe anne schau bitte nach mehr :-) danke--[[Benutzer:Studentin|Studentin]] 00:44, 4. Jul. 2012 (CEST)<br /> | durch spiegelung von abc an g erhält man ebenfalls a´´´b´´´c´´´<br />--[[Benutzer:Studentin|Studentin]] 23:47, 3. Jul. 2012 (CEST)<br />liebe anne schau bitte nach mehr :-) danke--[[Benutzer:Studentin|Studentin]] 00:44, 4. Jul. 2012 (CEST)<br /> | ||
<br /><ggb_applet width="1295" height="529" version="4.0" ggbBase64="UEsDBBQACAgIAJy940AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAJy940AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vxtc5tIEv6c/RVTfLhPEWJmGF5ycrZiJ86lytndKueuru7LFoIRZo1AB8i2tvbHX88MIJCQItmSglznkgPD9Lw93T399Ahn9PPTNEYPPMujNLnQsG5oiCd+GkRJeKHNi8nA0X5+/9Mo5GnIx5mHJmk29YoLzRSSUQBNOPYYc+2BQcZsYFoMDxyPsIGDXeZbJnXMCdMQesqjd0n6izfl+czz+a1/x6feTep7hRz4rihm74bDx8dHvRpKT7NwGIZj/SkPNATTTPILrbx5B921Gj1SKU4MAw///fVGdT+IkrzwEp9rSCxhHr3/6c3oMUqC9BE9RkFxB7OnREN3PArvYE3U0dBQyMwAjxn3i+iB59CyUZRLLqYzTYp5iah/o+5QXK9GQ0H0EAU8u9AM3bBtbGDDIBRTgxoGDJJmEU+KUhiXgw6r7kYPEX9U/Yo7OaSpoSJN47EnukR//YWIQQz0VlywuhC4WJaqMtQzg6oLURdTXZiSMVVzU4maSsZUMibV0EOUR+OYX2gTL84BwSiZZKC9upwXi5jL+ZQPlsvHb2FNefQnCMN6NaQgh+eG8Vb8WvBriophe5G4MWqRzfcctBoSY3ePMclLxqT1mF3LJGzDMq0t6Ko57LRO1hgThpIf+bs2IiV7jKjKLxvQMk+yxNGwcpVR6R0ovxOypSYLPs2Fv1AXMVeYPUYMfMOywcoZwi5cbILAGxBmyGRQxA6yxNVG1IYKE1HkICGHKZLOwRz4x7RlZxZi0Jl4aoNPIgwDmYhRhKVPmQg8CUm/BB8lFCQYQwwaieExEV1QC5kWlKiDTJijcEkbgyCFhlCG4QmiGFHRGNuIWMgS/WFTuLrliKlDlwRZBrKw6BC8GjxaeTPIO4iK1VglXFEymxctiPxpUN0W6azWBUjDfrTc9tT+1NoV34xib8xjiBO3QpMIPXix8Ag50CRNClQpkahnYebN7iI/v+VFAa1y9If34N14BX+6Bum8GlvK+mmS/5alxVUaz6dJjpCfxkY95zTGjXtSzxoKtFFhNitYo8Jq3Nud46ZQg+Y5h/HTLK/EvSD4IiSWWwMg+WsSLy4z7t3P0qi9jNFQhpwRn/txFERe8i8wVjGKwAXVEUhuV1UIYsSpZpJmwe0iBxNGT//hWQpblYN1bDrLD8TVharCjOmuReqPA0Em9z3hfdjUnVYr8K7FhjpiqcH5Q60k74kv1xtmwrkbhS/5ZRovH0kIrrxZMc8kf4D9MRPr+pCEMZdmIp0bgrN/P06fbpV9UNXXt8UMSoaawTiU0CPYHgiDdYbldayuUkZMrZYypIwhJYzK4KKgrscukRLyOlZXKQUWrKZWLhVXy8RGNUyUy03N0ErXqTYsYf8i2M+TqLipCkXk3y+XKhr8Mp+OeW1F7T7xofocDVfMbHTPs4THpVWDMufpPFdO2jD4gPvRFIqqooTEE+r6J0xAPQ14mPFq4rHkZgowWWs07XXtsezqOkunX5KHb2ALKxMYDatZjnI/i2bC5tAYIsE9X1pVEOUeBJKg2U64ISzdFwED4CkENOCg8+IuzST/gn0FrsL7Yj4FsoUKaV7SQmuYP0gaJ/BE6fgP2Nrq6KfqlwqD6k5Tk0bpxbM7T1K90qS8Bc9aMMj+vqbBKjiAvVwBuPlMdCC0O+NcGYaaMdzMoEPpT62dCvDO0dOFNsA6hXC7EJwcJvOnYvGKx4rVCi9rbc7q6YqqwH4UUN+B7LJfkL0MMKIb5OiIXZ0/YqYuOOtC4OQeBjA/nU69JECJZIS/pfEiTBNtyVE8Q3gn8rCwOOQRAaPCaF5U9bDPxRBIsBLzlZgHFyABYzVgOUyHhtSAlQ7qrtoRoQC+cg9JWS7zhKIMUPLmH1EQcMlVh9vV2wC0qV/MqNQww2XIWioY76PgzVaY81CU6on437HD/Se6pyUu7YnopiPtSfQhzInqlNC1gLw7/Py/iWqSqygZTWdx5EdFbTOxsO4vSQExk8ugsR4K7zmfCQ7ya/It85JcHHQomUaI3RFqrz9QgzkZ7R9XIs/KWDHAhu7azG38vBo1jPujhgHRmTL5QYU8wTpxK7p/hmi3o9zHF0S5JrP/oXGO6rYiBlR3na1xjh2AGHx6DZBhXHEDUze3c4NdMWtzg69RlqVZNzX4uMYJPvzNm6X5378X/VtJQNnkh7K0JaCO7pDSBk3rCFyrE8/LTXhe7o/nZU/xZLpLm2HOPUyytAO6V5vQvdof3at+oSuIW4tdUIm1pRvm6fKEEhKVLdQF0sK3M3NoNvSbDb26IHKJ3bTUnVE01HWavMIoz7kM0qHnY6UWOxnl8We8wrhMe9XfGykH0C/HptbZ0q+1nKOPOljLPhhtk2BKdcYaOwh+NfoY91AfdRJSZ38m1m2HnZMX7MIOm/v6p00c8dlMsV8RGFOdlTql23OWQ/LF7QhfPhfhy14jTHS3vZsdg+N0M8jteF89F++rXuLtihAt8T6GQW8lkR1UsoNQ7kQrO8hlB8XsIJovp5s/inRWpxKyfCLSeYgwe4B5rxxvb2OeAyA9bYEzCr87kdAe6mQTE12eg9s6bda/OibaQ6V0nIpb8hjxXKFvR9fr13DAWwVjXO5epzjdXQ+g19tZ/Au5fL/4j1nSzQE9PaPfjvnlyzDvat43zI0fzfG3a+DqZRroat4TDQxwudGACtrs6TtfxR0tC9iYC2zMCPbICzZmBxtzhI2ZwqHyhVNnDdWLncqMxLftJ00ZXsKHDjX1fQ6sxTetrfc07LOlSVvTht7p5buH2AMRPV6LLrq2lt7oYu0A29Ldts+ckR7aAem21EM7IH3cdOQXbN/vV7UaPE+H7bfqDxHlDd1sfwtf7nJ29fbIgNi641itr5Rfl04/bSJ3fD+d8p7olErVLWQEw1apREe3zimNb+vtBqbc7Yh8TWmT7UoTq19qpMcaM3Xsmsc//9oL9GsFerAGergH6GFPQN9h6xOvfK0knydWQu1SK5qYKE2Ea5r4vE/6+flZyWabSBzqxSVHZy41nKW5y0Muqlvi+/CGF8h3RcShZFMz5IBHYN2ZaB34ZSJ4rdK+z5tSS1I6yu9YyXN5Ay0m8sYEzf2On5UhktPlg9sOPo+UEArADj7X/5OjZyUevFe6eA2kZjvek17hDabfZB/wo94qH9S2DxppHX+cU6q3XRNhrzQxqE2/tvwTccOjQD9s/qmw/KP88v+Xef8/UEsHCE/6KzhjCQAA/EYAAFBLAQIUABQACAgIAJy940DWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAnL3jQE/6KzhjCQAA/EYAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAAD6CQAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br /> | <br /><ggb_applet width="1295" height="529" version="4.0" ggbBase64="UEsDBBQACAgIAJy940AAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAJy940AAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vxtc5tIEv6c/RVTfLhPEWJmGF5ycrZiJ86lytndKueuru7LFoIRZo1AB8i2tvbHX88MIJCQItmSglznkgPD9Lw93T399Ahn9PPTNEYPPMujNLnQsG5oiCd+GkRJeKHNi8nA0X5+/9Mo5GnIx5mHJmk29YoLzRSSUQBNOPYYc+2BQcZsYFoMDxyPsIGDXeZbJnXMCdMQesqjd0n6izfl+czz+a1/x6feTep7hRz4rihm74bDx8dHvRpKT7NwGIZj/SkPNATTTPILrbx5B921Gj1SKU4MAw///fVGdT+IkrzwEp9rSCxhHr3/6c3oMUqC9BE9RkFxB7OnREN3PArvYE3U0dBQyMwAjxn3i+iB59CyUZRLLqYzTYp5iah/o+5QXK9GQ0H0EAU8u9AM3bBtbGDDIBRTgxoGDJJmEU+KUhiXgw6r7kYPEX9U/Yo7OaSpoSJN47EnukR//YWIQQz0VlywuhC4WJaqMtQzg6oLURdTXZiSMVVzU4maSsZUMibV0EOUR+OYX2gTL84BwSiZZKC9upwXi5jL+ZQPlsvHb2FNefQnCMN6NaQgh+eG8Vb8WvBriophe5G4MWqRzfcctBoSY3ePMclLxqT1mF3LJGzDMq0t6Ko57LRO1hgThpIf+bs2IiV7jKjKLxvQMk+yxNGwcpVR6R0ovxOypSYLPs2Fv1AXMVeYPUYMfMOywcoZwi5cbILAGxBmyGRQxA6yxNVG1IYKE1HkICGHKZLOwRz4x7RlZxZi0Jl4aoNPIgwDmYhRhKVPmQg8CUm/BB8lFCQYQwwaieExEV1QC5kWlKiDTJijcEkbgyCFhlCG4QmiGFHRGNuIWMgS/WFTuLrliKlDlwRZBrKw6BC8GjxaeTPIO4iK1VglXFEymxctiPxpUN0W6azWBUjDfrTc9tT+1NoV34xib8xjiBO3QpMIPXix8Ag50CRNClQpkahnYebN7iI/v+VFAa1y9If34N14BX+6Bum8GlvK+mmS/5alxVUaz6dJjpCfxkY95zTGjXtSzxoKtFFhNitYo8Jq3Nud46ZQg+Y5h/HTLK/EvSD4IiSWWwMg+WsSLy4z7t3P0qi9jNFQhpwRn/txFERe8i8wVjGKwAXVEUhuV1UIYsSpZpJmwe0iBxNGT//hWQpblYN1bDrLD8TVharCjOmuReqPA0Em9z3hfdjUnVYr8K7FhjpiqcH5Q60k74kv1xtmwrkbhS/5ZRovH0kIrrxZMc8kf4D9MRPr+pCEMZdmIp0bgrN/P06fbpV9UNXXt8UMSoaawTiU0CPYHgiDdYbldayuUkZMrZYypIwhJYzK4KKgrscukRLyOlZXKQUWrKZWLhVXy8RGNUyUy03N0ErXqTYsYf8i2M+TqLipCkXk3y+XKhr8Mp+OeW1F7T7xofocDVfMbHTPs4THpVWDMufpPFdO2jD4gPvRFIqqooTEE+r6J0xAPQ14mPFq4rHkZgowWWs07XXtsezqOkunX5KHb2ALKxMYDatZjnI/i2bC5tAYIsE9X1pVEOUeBJKg2U64ISzdFwED4CkENOCg8+IuzST/gn0FrsL7Yj4FsoUKaV7SQmuYP0gaJ/BE6fgP2Nrq6KfqlwqD6k5Tk0bpxbM7T1K90qS8Bc9aMMj+vqbBKjiAvVwBuPlMdCC0O+NcGYaaMdzMoEPpT62dCvDO0dOFNsA6hXC7EJwcJvOnYvGKx4rVCi9rbc7q6YqqwH4UUN+B7LJfkL0MMKIb5OiIXZ0/YqYuOOtC4OQeBjA/nU69JECJZIS/pfEiTBNtyVE8Q3gn8rCwOOQRAaPCaF5U9bDPxRBIsBLzlZgHFyABYzVgOUyHhtSAlQ7qrtoRoQC+cg9JWS7zhKIMUPLmH1EQcMlVh9vV2wC0qV/MqNQww2XIWioY76PgzVaY81CU6on437HD/Se6pyUu7YnopiPtSfQhzInqlNC1gLw7/Py/iWqSqygZTWdx5EdFbTOxsO4vSQExk8ugsR4K7zmfCQ7ya/It85JcHHQomUaI3RFqrz9QgzkZ7R9XIs/KWDHAhu7azG38vBo1jPujhgHRmTL5QYU8wTpxK7p/hmi3o9zHF0S5JrP/oXGO6rYiBlR3na1xjh2AGHx6DZBhXHEDUze3c4NdMWtzg69RlqVZNzX4uMYJPvzNm6X5378X/VtJQNnkh7K0JaCO7pDSBk3rCFyrE8/LTXhe7o/nZU/xZLpLm2HOPUyytAO6V5vQvdof3at+oSuIW4tdUIm1pRvm6fKEEhKVLdQF0sK3M3NoNvSbDb26IHKJ3bTUnVE01HWavMIoz7kM0qHnY6UWOxnl8We8wrhMe9XfGykH0C/HptbZ0q+1nKOPOljLPhhtk2BKdcYaOwh+NfoY91AfdRJSZ38m1m2HnZMX7MIOm/v6p00c8dlMsV8RGFOdlTql23OWQ/LF7QhfPhfhy14jTHS3vZsdg+N0M8jteF89F++rXuLtihAt8T6GQW8lkR1UsoNQ7kQrO8hlB8XsIJovp5s/inRWpxKyfCLSeYgwe4B5rxxvb2OeAyA9bYEzCr87kdAe6mQTE12eg9s6bda/OibaQ6V0nIpb8hjxXKFvR9fr13DAWwVjXO5epzjdXQ+g19tZ/Au5fL/4j1nSzQE9PaPfjvnlyzDvat43zI0fzfG3a+DqZRroat4TDQxwudGACtrs6TtfxR0tC9iYC2zMCPbICzZmBxtzhI2ZwqHyhVNnDdWLncqMxLftJ00ZXsKHDjX1fQ6sxTetrfc07LOlSVvTht7p5buH2AMRPV6LLrq2lt7oYu0A29Ldts+ckR7aAem21EM7IH3cdOQXbN/vV7UaPE+H7bfqDxHlDd1sfwtf7nJ29fbIgNi641itr5Rfl04/bSJ3fD+d8p7olErVLWQEw1apREe3zimNb+vtBqbc7Yh8TWmT7UoTq19qpMcaM3Xsmsc//9oL9GsFerAGergH6GFPQN9h6xOvfK0knydWQu1SK5qYKE2Ea5r4vE/6+flZyWabSBzqxSVHZy41nKW5y0Muqlvi+/CGF8h3RcShZFMz5IBHYN2ZaB34ZSJ4rdK+z5tSS1I6yu9YyXN5Ay0m8sYEzf2On5UhktPlg9sOPo+UEArADj7X/5OjZyUevFe6eA2kZjvek17hDabfZB/wo94qH9S2DxppHX+cU6q3XRNhrzQxqE2/tvwTccOjQD9s/qmw/KP88v+Xef8/UEsHCE/6KzhjCQAA/EYAAFBLAQIUABQACAgIAJy940DWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAnL3jQE/6KzhjCQAA/EYAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAAD6CQAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br /> | ||
− | toll! Fällt jemand eine Begründung ein, warum das Neue Drehzentrum der 4. Punkt des Parallelogrammes ist?--[[Benutzer:Tutorin Anne|Tutorin Anne]] 20:30, 5. Jul. 2012 (CEST) | + | toll! Fällt jemand eine Begründung ein, warum das Neue Drehzentrum der 4. Punkt des Parallelogrammes ist?--[[Benutzer:Tutorin Anne|Tutorin Anne]] 20:30, 5. Jul. 2012 (CEST)<br /><br /><ggb_applet width="1366" height="607" version="4.0" ggbBase64="UEsDBBQACAgIADwF5EAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIADwF5EAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VzbbuNGEn1OvqKhBYIsMKL6yksiJ4id8ewAkwsws4vFvgSU2KI4pkiFpGxrkM/JN+xT3vxjW91NUqR1GcuWZdpYwzYvfanqc6q6qihCw++vZzG6lFkepclJj1i4h2QyToMoCU96i2LSd3vff/flMJRpKEeZjyZpNvOLkx5XPaMAhkjiC+E5fUxHos9tQfquT0XfJZ4Y25y5fCJ6CF3n0TdJ+rM/k/ncH8v346mc+e/SsV9owdOimH8zGFxdXVmVKCvNwkEYjqzrPOghUDPJT3rlyTcwXWvQFdPdKcZk8O+f3pnp+1GSF34ylj2klrCIvvvyi+FVlATpFbqKgmIK2jOX9tBURuEUFuVw3kMD1WsOiMzluIguZQ5jG5d60cVs3tPd/ES1f2HOUFyvp4eC6DIKZHbSwxZ2KBOuB7px7hDH7aE0i2RSlH1JKXNQzTa8jOSVmVadaYmgWJGm8chXM6I//kAUU4xeqQMxBwoH2zZN2NzDzByoOXBzEKYPN8O56cpNH276cNZDl1EejWJ50pv4cQ4QRskkA/rq67xYxlLrU95YrZ68gjXl0SfozDDYicEc7mP8Sv3Z8MdVw6C9SNKQWmSLPYVWIgmz7bvLpA9aKauFblonFVvWae8QahZ+p4WKhkwQpX/135pEtmuZtyWa64cJtPlRljgcVL4yLN0D5VPVtzSfQs5y5TDMQ8JTdk+QAOewHTBzgYgHB4cicAdEBOICLomLbHV0EHOggSOGXKT6EYa0dwgX/nFHT2YjAZOpuw44JSIgiCPBENFOxRG4EtKOCU5KGfQQAgkYpMQTqqZgNuI2XDEXcdBR+aRDoCODgXAN4iliBDE1mDiI2shW8xGufN12leowJUU2RjZRE4Jbg0sbd4b+LmJqNXYJV5TMF0ULovEsqE6LdF5zAb1hQ1pte2aDau2KXwxjfyRjiBTvFZMIXfqx8ggtaJImBapIpOZemPnzaTTO38uigFE5+uhf+u/8Ql6fQ++8kq37jtMk/zVLi7M0XsySHKFxGuNa5zQmjXNaaw0XrNHAmw2i0WA3zp2NclNoQYtcgvw0y6vufhC8VT1WWwMg+UsSL08z6V/M06i9jOFAB52hXIzjKIj85F9grEqKwgWtYpDar6oYZGO70iTNgvfLHEwYXf9HZikEAY4tQTB1XWwLlzMBkXVpmgjFlucywTzsQRDGRO1MY195n22pvjYlzPOIY3vQstzY5GBiRMvLmiL/Wq5WG2ZRbSzq/G1+msZB3azXf+bPi0Wm0wcQlKlF/ZCEsdQ2oj0bYvP4YpRevy93azPXh+UcrrBRYBRq3BHsDVQtMiyPI3PUfZRmdS+s+2DdA1fWFgV1O/Go7qGPI3PUvcB8jWrlSkm1SoIrMVGudzTcK/2m2q2U8atIv0ii4l11UUTji9VS1YCfF7ORrE2oPSc51JzDwS0bG17ILJFxadLA5SJd5MZDG9YeyHE0g0vTUELiK7r+CQqYu4EMM1kpHuvUzACmW3HTWNdu66nOs3T2Nrn8ALZwS4HhoNJymI+zaK5MDo0gDFzIlVUFUe5DFAma45QPwtLHKloAPIWCBrxzUUzTTCdfsKnAUbleLGeQaqFCm5e20BrmH3QOp/BE6egj7Gt16DPtK8KgeaOpaaP04/nU13leaVL+UmYtGPR8P6XBbXAAe70C8PG5mkCxO5fSGIbRGE7mMKH2p9Y2BXjn6Pqk1ycWg1i7VCk5KPPJJPEmiVWrVV7W2pnN3VtUgf0YoD4D2Wm3IHsYYNTC9NERO3v+iHFLJaxLhZN3GMDG6WzmJwFKdDr4axovwzTprRIUHyvvRD5RFod8qmA0GC2Kqh32uRgCCTHdxqabDwfIAEZGYClmA0NGYMVBPVU7IhSQrFxASZbrKqEoA5Q++UcUBFInqoPd9DYAbfJLBNMMC1KGrBXBZB+Ct1thLkN1VSsy/owd7q/onpa4sidqcVfbk5pDmROzGGVrAfnu8MvfEzMkN1Eyms3jaBwVtc3EyrrfJgXETKmDxnoovJByrnKQX5IPmZ/k6jmH6dMIsXeE2u8O1GBOuP3jaeRFGSv6BNJGR3iNnxdDw6g7NPQpJNoa+H6FPCUW9aj7bNFuR7kfHxDlmpn9k8Y5YbHKOxy2O5cSB8gMXr8EzCi3KKVCw+ZZnDDnMMC1M4SfoixLs80Jwo9rmcEPX/nzNP/2czlAqxQohzxprrZClVCLUI2pDdtzc/smj5B/bUT3dBu6p/uje9pVdMFixZOge7YN3bP90T3rFrq2ZROvlVAYpMVhqtM7lQ4lIqaAqC9oC96NxURz4Lg50K8vVHlxN5I2FxkNto5TauDy0RemG2h+rGrjTjb5+BrfSsK428qFebsKgRPh2Kvm55ucrVUkXaQD4G7tE57N2ymyYBZxnRdDwqiDJNR1SV0Q2p5lY24/I9Tvkio29/XX2xLGe6eN3QrAzLZYmZETYrniMxn5IXPG3TCf3hfm047D7FnMOR7KZ7tRPrsvymddRJmDBdco08dBeWcSuSGV3JBQ3imt3JBcbkgxNySaD083nyrprJ5T6OsjJZ2HCLMH0Pv2E+8dmWffgzO3kXlWgp5D+L1T5tlBTraln3UmJIRFsevwql28GFJGnSVlw4NyIlzLY9x5vvC3w+z5S3jsC4mlfkS+LD9COuZj3/Vger47o39gXt+thKhPKOT0Yi2W9BkDSuixc/3dNJw+jIZNwztPA7GooHwVVtwj1wW7GTl7GCObhneGEddiWxgh4lEc4w6Fw9byYWsRsUcpsbWg2FpWbC0uDlViHLvQqF4PNaakPrM/apXxkBTqUKrvfMZ9q9AAX3BdzOtm+zk96Nuj0ugcL7erDcd12mlunzjMIg5fhY6X80LUpp2mM9SoiqPpMbRVBVKIKrZ+o75ufj6stKPV+5KVdrT6cdtzxGB3MLjNcXA/Rtsv7h8iDWCWDc5VPv92LbfKifuuC/4lPCpeKJOvt+V8cj8mZUeYpBjyOUKrKlNFtrLK7EO5aXHMntUjmTaF70DlzZ4o1/ib7OZPrX5FzjMgz7Ww0wx0j0PiXtifG+yDNezDPbAPO4L91i0QIIdSCD9Szrcd8NqLbqE+MaiHa6i/2acmfXOvCrSdShyqBqXM4yrKYEIIMIAxMw7APYYtzl2XEsxISQdjjsWorWrTwz0z21yT1lFel4TnpgB8s63IpKU3/EZMf6lPYMREn3Cg7Ddyr1qRHq8y3PXE9JFKQwXYwXX9fya0BwOyUwy8sAxmN/STTkFf2n7zzd6leUa4coPHDYdPQEHYKQr6LfNvWv+RMsAnTePXC+rpHqnktOup5LFiyHbof8mKaQophh9vJ2G6RkK0BwlRV0iogV82GVEfZ1Cq3tZ0sU0fKZDcE//X2/D/uAf+HzuPP/ew5WKCbQ4MqN3sCKWVvJ5nMJ/6/L7E4YO8LiC+QcNJ76vfF2nxbeDnKMxu/kokCjIZQeKNorxAEtTSX/Y1nkZytEhCFMgcjTJ/kcjka4rmi+SiyOeRDGUMrTL5+1d/IxhmG8kIjWSR3fwZFjAmQ/5IfbNWgD5dSfUFEiiIlN4ZCAKJ0oySOTTCvisTdOEnCdqgVLDIxlM9ybpsdBVJJerTYlapCOcwfnwRysnNX9OsQFcyAwgtLe/rsv/aIs0i8jQGNfVKdK8sL6QRiiYoh0GvYIXJzX+LKJQoAq3K6WB+FMYS7sBJtWxoQwGSr9DXgT+FTgpcMJ+TSVghNosKfRe0AKLUROUk9Rwyu4hv/swKo73+Z7p8AtSicIXZKPYXK8jM7Ro3BX6JWoJu/hqppaEFTD9BkRmepcVqtMElHSl4G9ipAYHfYlYNDdL5XMYw/DKdrfSeqIW9QrNFDrqBBpUekSKt1kVbltI8qYTnLY2MrkFbZojguiUKbD4He1foN5Cd+noFkaHHsBgi1RKULN38majTQAInGg85OQlCy7iHdqn2xlOAD/XaDvWUmw+sPyt+VZU/0juQeg1WvWTT/pBCPUqjzrZ3De65dZ9veyhzscfWfdH5rZu42HJshgXAyg12XQqgbwwLk9/IGg/xHjzEHeHBZoJaDiaOS3WuYioCrt4c8zzBXK5sm2libEapbRHX454rhMPIEWLqoPmFQuq6+hLK7/4HUEsHCB5C2hcYDAAAIVMAAFBLAQIUABQACAgIADwF5EDWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAPAXkQB5C2hcYDAAAIVMAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACvDAAAAAA=" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br />--[[Benutzer:Studentin|Studentin]] 00:42, 4. Jul. 2012 (CEST)<br /> |
+ | Super! Eine sehr gute Möglichkeit, das Parallelogramm zu begründen.--[[Benutzer:Tutorin Anne|Tutorin Anne]] 20:29, 5. Jul. 2012 (CEST) | ||
+ | |||
[[Kategorie:Einführung_P]] | [[Kategorie:Einführung_P]] |
Aktuelle Version vom 9. Juli 2012, 21:36 Uhr
Zeigen Sie, dass die Verkettung dreier Punktspiegelungen wieder eine Punktspiegelung ist, wobei das Zentrum der neuen Punktspiegelung auf dem Eckpunkt eines Parallelogramms liegt, dessen drei andere Eckpunkte durch die Zentren der zu ersetzenden drei Punktspiegelungen gebildet werden.
hier für den anfang erst mal nen geogebra-bild dazu.
das dreieck abc wird durch spiegelung an d zu a'b'c',
dann an e zu a´´ b´´ c´´
und schließlich an f zu a´´´ b´´´ c´´´.
d, e und f können bewegt werden.
durch spiegelung von abc an g erhält man ebenfalls a´´´b´´´c´´´
--Studentin 23:47, 3. Jul. 2012 (CEST)
liebe anne schau bitte nach mehr :-) danke--Studentin 00:44, 4. Jul. 2012 (CEST)
toll! Fällt jemand eine Begründung ein, warum das Neue Drehzentrum der 4. Punkt des Parallelogrammes ist?--Tutorin Anne 20:30, 5. Jul. 2012 (CEST)
--Studentin 00:42, 4. Jul. 2012 (CEST)
Super! Eine sehr gute Möglichkeit, das Parallelogramm zu begründen.--Tutorin Anne 20:29, 5. Jul. 2012 (CEST)