Benutzer:Sternchen: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Zeile 25: | Zeile 25: | ||
|| | || | ||
|} | |} | ||
− | |||
+ | {| class="wikitable " | ||
+ | |+ Beweis | ||
+ | ! Nr. | ||
+ | ! Beweisschritt | ||
+ | ! Begründung | ||
+ | |- | ||
+ | ! style="background: #FFDDDD;"|(I) | ||
+ | | Element | ||
+ | | Voraussetzung | ||
+ | |- | ||
+ | ! style="background: #FFDDDD;"|(II) | ||
+ | | Element | ||
+ | | Element | ||
+ | |- | ||
+ | ! style="background: #FFDDDD;"|(III) | ||
+ | | Element | ||
+ | | Element | ||
+ | |- | ||
+ | ! style="background: #FFDDDD;"|(IV) | ||
+ | | Element | ||
+ | | Element | ||
+ | |- | ||
+ | ! style="background: #FFDDDD;"|(V) | ||
+ | | Element | ||
+ | | Element | ||
+ | |} | ||
+ | |||
+ | <br /> | ||
== Kleine Zusammenfassungen == | == Kleine Zusammenfassungen == | ||
=== Klasseneinteilung === | === Klasseneinteilung === |
Version vom 5. Juni 2010, 13:52 Uhr
Formatierungshilfen und -erinnerungen
Schritt | Begründung |
1) | Voraussetzung |
2) | (1) |
3) | |
4) | |
5) | |
6) |
Nr. | Beweisschritt | Begründung |
---|---|---|
(I) | Element | Voraussetzung |
(II) | Element | Element |
(III) | Element | Element |
(IV) | Element | Element |
(V) | Element | Element |
Kleine Zusammenfassungen
Klasseneinteilung
- Es sei eine Menge und eine Menge von Teilmengen von .
- ist eine Klasseneinteilung von , wenn gilt:
- notwendige Bedingung 1: Keine der Teilmengen ist die leere Menge.
- notwendige Bedingung 2: Je zwei Teilmengen sind disjunkt.
- notwendige Bedingung 3: Die Vereinigung aller Teilmengen ergibt wieder die Menge .
- Mengen sind disjunkt, wenn die Schnittmenge dieser Mengen die leere Menge ist, bzw. die Mengen keine gemeinsamen Objekte besitzen.
Relationen
Definition: (n-stellige Relation)
- Es seien Mengen, wobei keine dieser Mengen die leere Menge ist. Jede Teilmenge aus ist eine stellige Relation.
Definition: (Äquivalenzrelation)
- Eine Relation in einer Menge heißt Äquivalenzrelation, wenn sie reflexiv, symmetrisch und transitiv ist.
Versuch einer Auflistung
Axiome
AXIOM I/0
- Geraden und Ebenen sind Punktmengen.
AXIOM I/1(Axiom von der Geraden)
- Zu zwei beliebigen verschiedenen Punkten gibt es genau eine Gerade, die die beiden Punkte enthält.
AXIOM I/2
- Zu jeder Geraden gibt es wenigstens zwei Punkte, die dieser Geraden angehören.
AXIOM I/3
- Es gibt wenigstens 3 Punkte, die nicht kollinear sind.
Axiom I/4
- Zu je drei nichtkollinearen Punkten gibt es genau eine Ebene, die diese drei Punkte enthält. Jede Ebene enthält (wenigstens) einen Punkt.
Axiom I/5
- Wenn zwei Punkte einer Geraden g in einer Ebene E liegen, so gehört g zu E.
Axiom I/6
- Wenn zwei Ebenen einen Punkt gemeinsam haben, so haben sie noch mindestens einen weiteren Punkt gemeinsam.
Axiom I/7
- Es gibt vier Punkte, die nicht komplanar sind.
Axiom II.1: (Abstandsaxiom)
- Zu je zwei Punkten und gibt es eine eindeutig bestimmte nicht negative reelle Zahl mit .
Axiom II.2:
- Für zwei beliebige Punkte und gilt .
Axiom II/3: (Dreiecksungleichung)
- Für drei beliebige Punkte und gilt:
Axiom III.1: (Axiom vom Lineal)
- Zu jeder nicht negativen reelen Zahl gibt es auf jedem Strahl genau einen Punkt, der zum Anfangspunkt von den Abstand hat.
Definitionen
Definition I/2: (kollinear)
- Eine Menge von Punkten heißt kollinear, wenn es eine Gerade gibt, die alle Punkte der Menge enthält.
- Schreibweise: koll(A, B, C, ...) Sollten die Punkte A, B, C einer Menge nicht kollinear sein, so schreibt man:nkoll(A, B, C)
Definition I/3: (Inzidenz Punkt Ebene)
- Ein Punkt P inzidiert mit einer Ebene E, wenn P ein Element der Ebene E ist.
Definition I/4: (Inzidenz Gerade Ebene)
- Eine Gerade g gehört zu einer Ebene E, wenn jeder Punkt von g zu E gehört.
Definition I/5: (Raum)
- Die Menge aller Punkte P wird Raum genannt.
Definition I/6: (komplanar)
- Eine Menge von Punkten heißt komplanar, wenn es eine Ebene gibt, die alle Punkte der Menge enthält. Schreibweise: komp(A, B, C, D, ...) (analog nkomp(..) für nicht komplanar)
Definition I/7: (komplanar für Geraden)
- Zwei Geraden g und h sind komplanar, wenn es eine Ebene gibt, in der beide Geraden vollständig liegen.
- Schreibweise: komp(g, h)
Definition I/8: (Geradenparallelität)
- Zwei Geraden g und h sind parallel, wenn sie identisch oder komplanar und schnittpunktfrei sind.
- In Zeichen: g||h.
Definition I/9: (windschief )
- Zwei Geraden g und h sind windschief, wenn sie schnittpunktfrei und nicht parallel sind.
Definition I/10: (parallel für Ebenen)
- Zwei Ebene E1 und E2 sind parallel, wenn sie keinen Punkt gemeinsam haben.
Definition II.1: (Abstand)
- Der Abstand zweier Punkte und ist die Zahl, die nach dem Abstandsaxiom den Punkten und zugeordnet werden kann.
Schreibweise: .
Definition II.1: (Zwischenrelation)
- Ein Punkt liegt zwischen zwei Punkten und , wenn gilt und der Punkt sowohl von als auch von verschieden ist.
- Schreibweise:
Definition II.2: (Strecke, Endpunkte einer Strecke)
Definition II.3: (Länge einer Strecke)
Definition II.3: (Halbgerade, bzw. Strahl)
Definition III.1: (Mittelpunkt einer Strecke)
- Wenn ein Punkt der Strecke zu den Endpunkten und jeweils den selben Abstand hat, dann ist er der Mittelpunkt der Strecke .
Sätze
Satz I.1
- Es seien g und h zwei Geraden. Wenn g und h nicht identisch sind, haben sie höchstens einen Punkt gemeinsam.
Satz I.2: (Kontraposition von Satz I.1)
- Es seien g und h zwei Geraden.
- Wenn g und h mehr als einen Punkt gemeinsam haben, so sind g und h identisch.
Satz I.3: (Existenz von drei Geraden)
- Es existieren mindestens drei paarweise verschiedene Geraden.
Satz I.5:
- Zwei voneinander verschiedene Ebenen haben entweder keinen Punkt oder eine Gerade gemeinsam, auf der alle gemeinsamen Punkte beider Ebenen liegen.
Satz I.6:
- Eine Ebene und eine nicht in ihr liegende Gerade haben höchstens einen Punkt gemeinsam.
Satz I.7:
- Jede Ebene enthält (wenigstens) drei Punkte.
Satz II.1
- Aus folgt .
Satz II.2:
- Aus folgt .
Satz II.3
- Es sei mit sind paarweise verschieden.
Dann gilt oder oder .
Satz II.4
- Es sei ein Punkt einer Geraden .
Die Teilmengen , und bilden eine Klasseneinteilung der Geraden .
Satz III.1: (Existenz und Eindeutigkeit des Mittelpunkte einer Strecke)
- Jede Strecke hat genau einen Mittelpunkt.