Winkelkreuz: Unterschied zwischen den Versionen
Wurzel (Diskussion | Beiträge) (→peach22) |
|||
Zeile 41: | Zeile 41: | ||
Beweis: (ich habe eine Idee, jedoch komm ich hier nicht ganz klar mit dem Schreiben) sorry. Peach22 | Beweis: (ich habe eine Idee, jedoch komm ich hier nicht ganz klar mit dem Schreiben) sorry. Peach22 | ||
− | Es können nur Figuren gespannt werden, wo die Diagonalen senkrecht zueinander stehen. | + | Es können nur Figuren gespannt werden, wo die Diagonalen senkrecht zueinander stehen. Es gibt gleichschenklige Trapeze wo die Diagonalen senkrecht aufeinander stehen, aber es gibt auch welche wo dies nicht der Fall ist. |
--[[Benutzer:Wurzel|H2O]] 22:10, 14. Jul. 2012 (CEST) | --[[Benutzer:Wurzel|H2O]] 22:10, 14. Jul. 2012 (CEST) | ||
Version vom 14. Juli 2012, 21:49 Uhr
Techniklehrer Mayer2 möchte die hübsche Referendarin Lisa beeindrucken und baut ihr das folgende Winkelkreuz für den Geometrieunterricht.
Auch für Sie wird in den Klausuren des Sommersemesters ein solches Winkelkreuz von Bedeutung sein. Lassen Sie Ihrer Phantasie freien Lauf.--*m.g.* 11:49, 12. Jul. 2012 (CEST)
Inhaltsverzeichnis |
Kommentar von Studentin
ich hab zwar keine idee für eine klausurfrage, aaaber:
techniklehrer mayer2 (der mein volles mittleid wegen seines namens hat) hätte sich doch viel arbeit sparen können!
statt den 16 "penunsel" hätten die vier äußeren gereicht.
und wenn er plant, auch andere winkel statt 90°-winkel abzumessen, gibt es doch bestimmt geschicktere anzahlen an diesen kleinen stäben, da man hier nur fast nur "komische" winkel (22,5°, 11,25°, 33,75°) und nur wenige "normale" winkel (15°, 30°, 45°) abmessen kann.
ganz davon abgesehen, dass die runde halbkugel in der mitte nicht nur hässlich, sondern sicher auch störend beim messen ist :-)
--Studentin 09:54, 14. Jul. 2012 (CEST)
p.s.: beeindruckt hätte mich allerdings, dass das winkelkreuz anscheinend in der luft schweben kann.
M.G.
- Mayer2 heißt natürlich nur Mayer. Weil er der zweite mit dem Namen an der Schule ist, wird er Mayer2 (gesprochen Mayer zwo) genannt.
- Referendarin Lisa steuert Gummifäden (zur Schlaufe gebunden) bei und lässt ihre Schüler Vierecke spannen.
- Mit Cinema4D (in den Räumen A233, A236 erreichbar unter Programme, weitere Programme, Mathematik/Informatik) können auch Sie das Winkelkreuz schweben lassen.
- das mayer2 nur mayer heißt, ist mir auch klar - trotzdem tut er mir leid, dass er die nummer zwo ist! ( wo er doch wenigstens in seinem erwachsenenleben einmal die nummer eins sein wollte...)
- die gummifäden eröffnen völlig neue perspektiven (zwei senkrecht aufeinander stehende diagonalen (drache, raute quadrat))
- das winkelkreuz sieht jetzt schon aus, als würde es schweben!!! sonst hätte mich der herr mit der nummer zwo im namen ja auch nicht wegen des schwebens beeindruckt.
sollte es doch nicht in der nähe des betrachters schweben, sondern auf dem parkettboden liegen, wäre es ein riiiiiiesiges kreuz (ca. drei meter im vergleich zu dem bodenmuster, wo doch so ein parkettstreifen eine breite von 10cm hat).
damit allerdings hätte mich mayer2 dann auch beeindruckt :-)
--Studentin 10:54, 14. Jul. 2012 (CEST)
peach22
Also Aufgabe 3 hat die Überschrift: Kriterien. Unteraufg. sind: definieren, Eigenschaften benennen, einen Satz dazu beweisen, ...
Ist es ausreichend, wenn man das Winkelkreuz über zwei gleich lange Strecken, Mittelpunkt und senkrecht bzw. orthogonale definiert?
Man könnte das ganze auch über den Umkreis und der gegenüberliegenden Innenwinkel bestimmen, oder? --Sissy66 17:22, 14. Jul. 2012 (CEST)
ich glaube nicht, dass das winkelkreuz definiert werden soll, sondern dass mit hilfe der gummibänder verschiedene vierecke gespannt werden können, die dann über die senkrecht zueinander stehenden diagonalen (winkelkreuz) definiert werden sollen--Studentin 18:01, 14. Jul. 2012 (CEST)
Ja, das könnte auch sein. In diesem Fall könnte man bestimmen, wie die jeweiligen Vierecke in Relation zum Winkelkreuz stehen. --Sissy66 18:08, 14. Jul. 2012 (CEST)
oder auch einfach nur, für die einführung welcher vierecke die hübsche lisa dieses kreuzes verwenden könnte und für welche nicht und warum.--Studentin 18:15, 14. Jul. 2012 (CEST)
--> also ich hab zusätzlich noch ein Trapez spannen können.
Aber Rechtecke und Parallelogramme gehen nicht.
--> aber kann das mal bitte jmd. sauber und korrekt beweisen. Weil nur begründen wird sicherlich nicht reichen. Beweis: (ich habe eine Idee, jedoch komm ich hier nicht ganz klar mit dem Schreiben) sorry. Peach22
Es können nur Figuren gespannt werden, wo die Diagonalen senkrecht zueinander stehen. Es gibt gleichschenklige Trapeze wo die Diagonalen senkrecht aufeinander stehen, aber es gibt auch welche wo dies nicht der Fall ist. --H2O 22:10, 14. Jul. 2012 (CEST)
Ein Negativbeispiel von M.G.
Sie haben es richtig erfasst, es wird um Vierecksarten gehen, die mit Hilfe des Winkelkreuzes von Mayer2 spannbar sind oder auch nicht. Natürlich wäre dann zu beweisen oder zumindest zu begründen, warum und weshalb das Winkelkreuz für manche Viereckstypen zu gebrauchen ist und für andere wiederum nicht.
Beispielaufgabe:
- Die schöne Lisa mag eher schlanke Rechtecke als dicke Quadrate. Sie mag auch viel viel lieber dünne Parallelogramme als pummelige Rauten. Warum kann Mayer2 trotz aller Bemühungen nicht bei Lisa landen?--*m.g.* 20:12, 14. Jul. 2012 (CEST)
Vielleicht liegts nicht an den Vierecken, sondern an der Person? :) --Flo60 21:30, 14. Jul. 2012 (CEST)
Es liegt wohl daran, dass die Diagonalen senkrecht aufeinander stehen. Wobei eint Raute nicht immer bummelig sein muss, diese könnte auch schön schlank gespannt werden und Lisa gefallen. --H2O 22:01, 14. Jul. 2012 (CEST) Wieso nur bei einer Raute? Kann man Miss Lisa nicht auch mit nem´schlanken Rechteck beeindrucken :)? --Sissy66 22:46, 14. Jul. 2012 (CEST)
Eine Aufgabe für die Abbildungsgeometrie von M.G. (Primarstufe)
Die "Penunseln" auf jedem Schenkel des Winkelkreuzes seien mit den Zahlen von 1 bis 4 nummeriert. Je weiter das entsprechende Penunsel von der Halbkugel in der Mitte des Kreuzes entfernt ist, um so größer ist die zugeordnete Zahl. Wir spannen ein Viereck mit folgenden Penunselnummern (beginnend bei einem Schenkel mathematisch positiv): 2,3,2,3. Begründen bzw. beweisen Sie: das gespannte Viereck ist drehsymmetrisch.--*m.g.* 20:19, 14. Jul. 2012 (CEST)