Lösung von Aufgabe 12.2P (SoSe 12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 12: Zeile 12:
 
5. beta=beta´(winkeltreue)(3.)
 
5. beta=beta´(winkeltreue)(3.)
  
6. alpha´+gamma+beta`=180° (Def. gestreckter Winkel 4.5.) q.e.d.--[[Benutzer:Geogeogeo|Geogeogeo]] 12:39, 16. Jul. 2012 (CEST)
+
6. alpha´+gamma+beta`=180° (Def. gestreckter Winkel 4.5.) q.e.d.--[[Benutzer:Geogeogeo|Geogeogeo]] 12:39, 16. Jul. 2012 (CEST)<br />
 
+
  
 +
Die Beweisidee ist ganz richtig, aber der Beweis so noch nicht.<br />
 +
Ist dir aufgefallen, dass du Schritt 1 nicht mehr zur Begründung verwendest? Für was machst du diesen dann?<br />
 +
Woher weißt du, dass der Winkel Alpha' auch wirklich der gedrehte Winkel ist bzw. dass der Schenkel des Winkels auf der Parallelen liegt? --[[Benutzer:Tutorin Anne|Tutorin Anne]] 13:23, 16. Jul. 2012 (CEST)
 +
<br /><br />
 
das rote dreieck wird zweimal im mittelpunkt der seiten ab und ac gespiegelt
 
das rote dreieck wird zweimal im mittelpunkt der seiten ab und ac gespiegelt
 
<ggb_applet width="1580" height="751"  version="4.0" ggbBase64="UEsDBBQACAAIAJ2D7UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAJ2D7UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vvdjts2Fr5On4LQxV7FtkiKkpx6UmQGSDfApCl2skXRm4CSaFsdWdJK8s8Ufam275Fn6iEpyZLtkT2O5y/dIA5F8ZCH5zu/pJ3Rd6tZhBYiy8MkPjNw3zSQiP0kCOPJmTEvxj3X+O71N6OJSCbCyzgaJ9mMF2eGJSnD4Mzwx9wbWoT2KGakZ3nc6XmeZ/e8seAm8TkxPcdAaJWHr+LkBz4Tecp9ceVPxYxfJj4vFONpUaSvBoPlctmvWPWTbDKYTLz+Kg8MBNuM8zOjfHgFy7UmLakiJ6aJBz+/v9TL98I4L3jsCwNJEebh629ejJZhHCRLtAyDYgoCs6FtoKkIJ1MQynVdAw0kVQqIpMIvwoXIYW6jq4QuZqmhyHgsx1/oJxTV8hgoCBdhILIzw+xj5jKCqUkJc7HFKOCRZKGIi5IYl0wH1XKjRSiWel35pFhaBiqSJPK4XBL9/jsiJjHRS9lg3RBobFsPmfqdSXVDdGPphmkaS0+3NKmlaSxNY1EDLcI89CJxZox5lAOGYTzOQH91Py9uIqH2U75Yi49fgkx5+BsQUxMMRYMO703zpfzY8LHkwKAtJG5wLbL5HZlWLAHvO/AkXyQprZgSRrd5EnaLnHYHUy34YYI25ARW6q/6bHGkXWJuctT9L2NoWw8i4mhQ+cqodA+UTyVtaT6FmOXSYegQsaG0e4wYOIftgJkzhIfQOASBOyDMkMWgi11ky9ZB1IEBC1HkIkmHKVLewVz4x3LUYjZisJh864BTIgyMLMQowsqpLASuhJRjgpMSChSMIQaTJHtM5BLURpYNPeoiC/YofdLBQEhhIvSBPUEUIyonYwcRG9lyPWxJX7dduXVYkiDbRDaWC4Jbg0trdwZ6F1EpjV3CFcbpvGhB5M+C6rFI0loXQA0BaR33dIBqhcUXo4h7IoJUcSU1idCCR9IjFKNxEheoUiLR7yYZT6ehn1+JooBZOfqVL/glL8TqLVDnFW9F6ydx/mOWFBdJNJ/FOUJ+Epn1npMIN55JvWvo0MaA1RxgjQG78ezs5JvACJrnAvgnWV6R8yB4JynWoQGQ/BBHN+eZ4NdpErbFGA1U1hmJuR+FQcjjn8BYJReJC1onIRmvqiTkgMWXO0my4OomBxNGq19ElkCQwUzm3Rvdo7qX+1z6GDPVULOnlhGLGm6+EuudTzLppo3Ou/w8idavlDAXPC3mmSoGILxlcodv4kkklMKVm0Km9a+9ZHWlNU31Wh9vUuiVO/AmCkSUySjJgKBsPd0qGrm1mspUNKaiMCvTCYN6HA+JolCtp1tFBbaot1aKiisxsVmxCXMVnkyjdIIq9EhLlnl7HofFZdUpQv96Laqc8MN85onaHtpr4lOtORpsGMzoWmSxiEr7BGXOk3mu3a1huoHwwxl09UAJCZfq+i9sQL8NxCQT1cYjVWhpwNRoy/K2Xqul3mbJ7F28+Ai2sLGB0aDa5Sj3szCVNoc8iOnXYm1VQZhzSAlBc550KBDdl6Ef4CkkNOBq82KaZKqUgggBrfSjSMygbkKFMi9loTXMb1RFJvFEifcrBKk6j+nxtcJgeMsgtbEx0AiP0imXZVspdcRvRNbCQS34YTzORYFWZ0YPYusNNLg5/D4JNsED3SgJwaFTrftUCG02Wh54SIGb8rZWRAJt5JKTrTwcXFG2v+lyXZerEgnpga0QrN9uqBFsS4O4B87zx4KTKRGJfd9g4hLMHnkANC8ezTjxUJuMdd94un3XPi2gfjKb8ThAsaoZf0yim0kSG+sqhpvS6xHH0loRJxJmjeG8qMYhfkaQoLAm8zUZhwbKBE8zLNns0KBmWOmoXqqdaQqoaK7h3Jaro0RRJj718O8wCISqZgfd6m8AeqD+caf+NxR8u5XmYiJ79Ub8PXZ69412G+qWJa7tiVX+yUpz6qlyZ3As+uJ/sZ6S6+QbztIo9MOiNplIGve7uIBULFQu2s6w10KksrT5EH/MeJzLyxBN08jcByLNnw7SZom003fZsPlHezHrO7j9+mvRgfd0dNBj63S0oQVLqYG6feY+I+Tbwft9GOiE2I7e/la8ztNQTESUzuPrAu+Lz80M2554TLaVijyxVmlfVzOmbDsyIjsqI94CqtcJKjkWVPJUQHX68nbyhKh2IfB2W+r26W632M0TrAoXx4p9isqsRx/w3PD9VwAYwScGrO23lxC/N3z2ra5Pv99y3aDbXWUqqJENjktn7duWE9YTxKoqN4d0Vm7O8bmrKzpmWZLtPi5sZZkW5m/+xdMk//YugbKackyI1PgT0/qCUx7REZEdpqCTH30PQP78EOTP7478+SMjT2l5SjkM+lNf4RyA/MUhyF/cHfmLp2HzhxbYeEddfW+KuOWyokRMX1nUHdKCf+f1RXOi35zI64680DhMibuvNRrafJDLjQ4TuK/LjYMM9p63u/PQV11xfF03HE8N7qou6e2+6CD0eZ2w99xtPDX0K1u/5X7D3Lhlcp/TNdNxlSe5rfL8dKebj/Wk4zPx3Q9e60Rc5uHqS/59dnDf3xMcWn1uo39+DPrnj4J+V3FPK4Aft8bcxvfiGHwvHtm6cWmsnd+fPVR931lWfsKtwlJ1yQbqHcVlNd1vT+eN7rrE3K/DriLz0wN+h1ZeQMpmywbut87ca7L3vePOUpNZffqMMuxBpeaTQvyfWG0+KQXsKTh7z/sbNfUzvI1EUP9CYTPSf/5Dx/bPf+qg/vmv7vCtfulVKw1my/VgY/MSa9ynpjV0rKFlutR1TGdfcO7Kztjcvns+VOn4eP3xzG+k4+rbgyhKlv8R40isFMCH+sMGYH9uAganG5fRoYttSgE3y6X/R6yF2F/bJmYyTPCQWUPKqE3dfx5gg+YPI9WPicv/GvP6b1BLBwjHakfZbggAALczAABQSwECFAAUAAgACACdg+1A1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAJ2D7UDHakfZbggAALczAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAABQkAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br />--[[Benutzer:Studentin|Studentin]] 16:26, 13. Jul. 2012 (CEST)
 
<ggb_applet width="1580" height="751"  version="4.0" ggbBase64="UEsDBBQACAAIAJ2D7UAAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAAIAJ2D7UAAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7Vvdjts2Fr5On4LQxV7FtkiKkpx6UmQGSDfApCl2skXRm4CSaFsdWdJK8s8Ufam275Fn6iEpyZLtkT2O5y/dIA5F8ZCH5zu/pJ3Rd6tZhBYiy8MkPjNw3zSQiP0kCOPJmTEvxj3X+O71N6OJSCbCyzgaJ9mMF2eGJSnD4Mzwx9wbWoT2KGakZ3nc6XmeZ/e8seAm8TkxPcdAaJWHr+LkBz4Tecp9ceVPxYxfJj4vFONpUaSvBoPlctmvWPWTbDKYTLz+Kg8MBNuM8zOjfHgFy7UmLakiJ6aJBz+/v9TL98I4L3jsCwNJEebh629ejJZhHCRLtAyDYgoCs6FtoKkIJ1MQynVdAw0kVQqIpMIvwoXIYW6jq4QuZqmhyHgsx1/oJxTV8hgoCBdhILIzw+xj5jKCqUkJc7HFKOCRZKGIi5IYl0wH1XKjRSiWel35pFhaBiqSJPK4XBL9/jsiJjHRS9lg3RBobFsPmfqdSXVDdGPphmkaS0+3NKmlaSxNY1EDLcI89CJxZox5lAOGYTzOQH91Py9uIqH2U75Yi49fgkx5+BsQUxMMRYMO703zpfzY8LHkwKAtJG5wLbL5HZlWLAHvO/AkXyQprZgSRrd5EnaLnHYHUy34YYI25ARW6q/6bHGkXWJuctT9L2NoWw8i4mhQ+cqodA+UTyVtaT6FmOXSYegQsaG0e4wYOIftgJkzhIfQOASBOyDMkMWgi11ky9ZB1IEBC1HkIkmHKVLewVz4x3LUYjZisJh864BTIgyMLMQowsqpLASuhJRjgpMSChSMIQaTJHtM5BLURpYNPeoiC/YofdLBQEhhIvSBPUEUIyonYwcRG9lyPWxJX7dduXVYkiDbRDaWC4Jbg0trdwZ6F1EpjV3CFcbpvGhB5M+C6rFI0loXQA0BaR33dIBqhcUXo4h7IoJUcSU1idCCR9IjFKNxEheoUiLR7yYZT6ehn1+JooBZOfqVL/glL8TqLVDnFW9F6ydx/mOWFBdJNJ/FOUJ+Epn1npMIN55JvWvo0MaA1RxgjQG78ezs5JvACJrnAvgnWV6R8yB4JynWoQGQ/BBHN+eZ4NdpErbFGA1U1hmJuR+FQcjjn8BYJReJC1onIRmvqiTkgMWXO0my4OomBxNGq19ElkCQwUzm3Rvdo7qX+1z6GDPVULOnlhGLGm6+EuudTzLppo3Ou/w8idavlDAXPC3mmSoGILxlcodv4kkklMKVm0Km9a+9ZHWlNU31Wh9vUuiVO/AmCkSUySjJgKBsPd0qGrm1mspUNKaiMCvTCYN6HA+JolCtp1tFBbaot1aKiisxsVmxCXMVnkyjdIIq9EhLlnl7HofFZdUpQv96Laqc8MN85onaHtpr4lOtORpsGMzoWmSxiEr7BGXOk3mu3a1huoHwwxl09UAJCZfq+i9sQL8NxCQT1cYjVWhpwNRoy/K2Xqul3mbJ7F28+Ai2sLGB0aDa5Sj3szCVNoc8iOnXYm1VQZhzSAlBc550KBDdl6Ef4CkkNOBq82KaZKqUgggBrfSjSMygbkKFMi9loTXMb1RFJvFEifcrBKk6j+nxtcJgeMsgtbEx0AiP0imXZVspdcRvRNbCQS34YTzORYFWZ0YPYusNNLg5/D4JNsED3SgJwaFTrftUCG02Wh54SIGb8rZWRAJt5JKTrTwcXFG2v+lyXZerEgnpga0QrN9uqBFsS4O4B87zx4KTKRGJfd9g4hLMHnkANC8ezTjxUJuMdd94un3XPi2gfjKb8ThAsaoZf0yim0kSG+sqhpvS6xHH0loRJxJmjeG8qMYhfkaQoLAm8zUZhwbKBE8zLNns0KBmWOmoXqqdaQqoaK7h3Jaro0RRJj718O8wCISqZgfd6m8AeqD+caf+NxR8u5XmYiJ79Ub8PXZ69412G+qWJa7tiVX+yUpz6qlyZ3As+uJ/sZ6S6+QbztIo9MOiNplIGve7uIBULFQu2s6w10KksrT5EH/MeJzLyxBN08jcByLNnw7SZom003fZsPlHezHrO7j9+mvRgfd0dNBj63S0oQVLqYG6feY+I+Tbwft9GOiE2I7e/la8ztNQTESUzuPrAu+Lz80M2554TLaVijyxVmlfVzOmbDsyIjsqI94CqtcJKjkWVPJUQHX68nbyhKh2IfB2W+r26W632M0TrAoXx4p9isqsRx/w3PD9VwAYwScGrO23lxC/N3z2ra5Pv99y3aDbXWUqqJENjktn7duWE9YTxKoqN4d0Vm7O8bmrKzpmWZLtPi5sZZkW5m/+xdMk//YugbKackyI1PgT0/qCUx7REZEdpqCTH30PQP78EOTP7478+SMjT2l5SjkM+lNf4RyA/MUhyF/cHfmLp2HzhxbYeEddfW+KuOWyokRMX1nUHdKCf+f1RXOi35zI64680DhMibuvNRrafJDLjQ4TuK/LjYMM9p63u/PQV11xfF03HE8N7qou6e2+6CD0eZ2w99xtPDX0K1u/5X7D3Lhlcp/TNdNxlSe5rfL8dKebj/Wk4zPx3Q9e60Rc5uHqS/59dnDf3xMcWn1uo39+DPrnj4J+V3FPK4Aft8bcxvfiGHwvHtm6cWmsnd+fPVR931lWfsKtwlJ1yQbqHcVlNd1vT+eN7rrE3K/DriLz0wN+h1ZeQMpmywbut87ca7L3vePOUpNZffqMMuxBpeaTQvyfWG0+KQXsKTh7z/sbNfUzvI1EUP9CYTPSf/5Dx/bPf+qg/vmv7vCtfulVKw1my/VgY/MSa9ynpjV0rKFlutR1TGdfcO7Kztjcvns+VOn4eP3xzG+k4+rbgyhKlv8R40isFMCH+sMGYH9uAganG5fRoYttSgE3y6X/R6yF2F/bJmYyTPCQWUPKqE3dfx5gg+YPI9WPicv/GvP6b1BLBwjHakfZbggAALczAABQSwECFAAUAAgACACdg+1A1je9uRkAAAAXAAAAFgAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc1BLAQIUABQACAAIAJ2D7UDHakfZbggAALczAAAMAAAAAAAAAAAAAAAAAF0AAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgB+AAAABQkAAAAA" showResetIcon = "false" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br />--[[Benutzer:Studentin|Studentin]] 16:26, 13. Jul. 2012 (CEST)

Version vom 16. Juli 2012, 12:23 Uhr

Beweisen Sie den Innenwinkelsatz für Dreiecke mit Hilfe zweier Punktspiegelungen.

1. Konstruire Parallele zur Strecke AB durch C (Parallelenaxiom)

2. Alpha´=D (M1,180) (Alpha) (Def. Punktspiegelung)

3. Beta´=D (M2,180) (Beta) (Def. Punktspiegelung)

4. alpha=alpha`(winkeltreue) (2.)

5. beta=beta´(winkeltreue)(3.)

6. alpha´+gamma+beta`=180° (Def. gestreckter Winkel 4.5.) q.e.d.--Geogeogeo 12:39, 16. Jul. 2012 (CEST)

Die Beweisidee ist ganz richtig, aber der Beweis so noch nicht.
Ist dir aufgefallen, dass du Schritt 1 nicht mehr zur Begründung verwendest? Für was machst du diesen dann?
Woher weißt du, dass der Winkel Alpha' auch wirklich der gedrehte Winkel ist bzw. dass der Schenkel des Winkels auf der Parallelen liegt? --Tutorin Anne 13:23, 16. Jul. 2012 (CEST)

das rote dreieck wird zweimal im mittelpunkt der seiten ab und ac gespiegelt


--Studentin 16:26, 13. Jul. 2012 (CEST)