Satz des Thales SS 12: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
 
Zeile 12: Zeile 12:
 
==ikonisches/halbikonisches Beweisen==
 
==ikonisches/halbikonisches Beweisen==
 
<ggb_applet width="1080" height="620"  version="3.2" ggbBase64="UEsDBBQACAAIANOV7zwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V1Jc9s4Fj5P/wqUpqorOYjBxq1jd5fjbO44k6k401M1lxRFwRJjilRIytuf6cv8gd7S6833/k3zAJCyKFKyKFm27OlcZIEgCLzvfW8BHpWtr04HIToWSRrE0XaLGLiFROTH3SDqbbdG2WHbaX315WdbPRH3RCfx0GGcDLxsu8UM2pLto+DLz/62lfbjE+SFqss3gTjZbh16YSpaKB0mwuumfSGyUrs3Og3CwEvO3nQ+CD9LLy/oQfai4QiekiUjaPMH3f0gLb4+Ug8chkH2NDgOuiJBYexvtywTpg5/fSOSLPC9cLvFsW6hsC7HLV2EJiav9uMkOI+jTHa/HPwQWhBKg3MBd1LZtvVILXRLjPww6AZeJBej5gGdEDoJulkf+mJHjimCXh8maxFHD+fHcdI9OEszMUCn/xFJvN2ihEtJn+lvTH9LYWLwRBOrS5Pf1DDi+EBkGeCSIu9UXEqslwTd0pe99EkcXjYN4yDKdr1hNkoUqCxvOsjO5APgWYmc8E7UC0XeRkHmfeEfdeLTAy0Fpod+dzZUt6gJdXq7cRgnKIEbTBM65J8d/an6yJmOe2HVB6se+Rhy0PF14lLVQ3129KfqFQaRnlq+clKsmuDiMUGKZIMUI+jiePGh1xGAbQuNoiDbL76ADhzlSyX6hn+MBh0gwaQWjMck1zXm1qMp/dk6EkkkQq0kEWA7ikcpOpbaqJ+lJtIVfjCAr/pCLhJPwvUvmIBu7YpeIoqJawppgamreFIRp5q3HhWTkHNIYa5+BrYA1pPJtTwRJyJID4OoO4p6sOIuylsu/ugn0CSpnAGNpAi6XgZ3SLMgQjEQQKJM6YtSt7HcXrfGFiNW5C9onl+/RAAu1+qO0jIvHPY9aCnoEXpnYAoml6vGex13y0I4DE5FV7dcPklJJkWn2602NpgF9JO20HZa6FwbRdVL00YyXt3Ockz1Wq9Y9ZP3pLruskJNQH4bK2cG4/nCLdps4X48GHigGpE3gIXvBokfCrXaQJpx5GGJOvKIFoNe4SgrLvl6uHyQihxBKwN/LCS/VTYIWR94F4k0VVYrm7RPs1VsAUnj5eW80OTASYjoGKYWJylCpzj3vWdYPxCdFy2nRCmlvEbypnMygQ144yQ4RTtF/52i1w44uTbBBie2hcf/YB47LH/GDpd/SHXfMWVfqfB6ch8jvYBUG7R0CCboMPDn4/5PpfBl2P0K2jvz0S6zZmcFW2GS1SnjRWB5lTkE7z2UA0jbPhSimwu5wBQNYUjlXid0a8KqgIPnFmWWQ7hLXAebOdM4ZdSyOTYxtm2LWKvwbh/0bkr8O5p1rysoePNRkCo8FrK3JOUaW7cVOFc24KZlM2q63HUpZY62asywnCkEQNRtC5qhm0ktbpucm24TDk/RJBhAVOoH2XyY9qIMogKQUIUqCiuvgtXT3HQ2Ic7TK4gzAw2LKzjkR0d/XAMg69H9uc72ls1GyanSybVzWy2eGoRN6+jyxF/M8O420Z/dpSRIMZ+gs5TkrRtealgWx9yB1IxjiplWPm5YtsttiQwmxOTuKuI/ED3ZPgXA7izT25mPQ5qPVki6M9v6mssEPBBOdQMtWej+Ju/dvwHLTA2wtGWhKyowPAWQtMvMwKbNXE6YQ0zCLXOOXZ6Wwzy7rKAIpcaM7TDIopp0HQkxlNnum+hd4kWp3PYoh85L6sNORR+6zfShu/kB8KT5o6ZFseMwgjGzHVunVhBqMocSx7EZN4lt25p+pkE4BUdAKeUONe15mDfxxbeN+ZMK5qIZ5uIuYU4Nk1ObM4sTTFwAXrs803BdTB3uuCYD6LXDa1MCGgIxAOeuYzumie885juzMD9shvnhbMz5xmEOQbdNGFhpAibe4WDkHQW6bTCbcptZ1HWYa2HtZ9sEwiLbdQBt6prYcYud0oVWe7dQ7zVDvXeXmL5O1G+d6+J0mMBMZKCUi/WdOM0gCoUL263PP47i7PFBlgj/SKDd1+gkSLpIwBTEuQj8fiQy9PnfCX784BgG2DfQcZz0RE90RPRQ36ueV1aGDB7QKj9tY8O6NPOSTCUeSKqCZRDiTvxz8jAbT2w9wT9zMs6enc114jgUXjReZ1/JAR4/EhVQV9lIXnz9bw4PU4AUVsqpjltdcy5JvKECQ7Ud+P0kyDJEvrgqjwvPenE0K5FAHq2zMN8EMJ5/RHS3znuiO/rqD7bdGlyV9+mHFlIbD3e9hqheP4MqPsRkk3n4JESkiYrO1q5KhvV+Exe7eWnW7ZvkuTD69wvGRfcxuVW/kbnZznUukoN7heOMfKhdmxDd5Xyo3n29LvY9lFfaneW+qO7mv6e646BwX54+MWzswOitKRGmpVqIG/BgUmobuNqlOTPD9LXrz3DWdYRzG5bvFn3YOoBsz9gArN3/a9+tDcD5SHr3DMl7HFXWJvq0lOj3QpnUp35fREdh0BPowTsRhO2HTxMRqB0AleufiKQrItQTh6NI/iGrpQZechSIJFs86aerJv01KrGupB+7pX+5Tth0uTQ/2Kg0X29hgDFqnOfTK/J8VWpZHybtzsry//xufhSk6gHHMoHeU6LEBndtiDcJdSxsE8sqSLlYyUa9pn2oyr2oBNWSV6ZoLHu2oLaxOeaCTZkLL/EvD2qtojEM45O34jAUp0rWFW0SA5iSrN19Oy59nerTDL3xQY9Cr3rm++f3jdD7fjn0mpmJhuDxBcGrlOxuPHg7JerVgPdDI/B+mAYP7KBNHfCGrkMc22brQK7IXAufX6q9MO8tdLul5LIGuh8bQffjNHSmQYEFLiEYoh/imNZf2C2IXX1UxUpRVTcQ6CiOeiBACOci9ASGT0+C6EiECwRU6nTlYHSA0jgM5e3d8hCpl52jIxFF+Y1edCLkKA3OX9iqoVgN2msLxaxxWd3M6KsWE17C5ClgcjAaDASIM0VJnHpKeL3k4g8pyH9r0aKOCNCuBkkkvaCToQDuSeQJGPR6K/x+Nu6NHsiXdF4kF58uvhXIxQ8fq/u8kd9HAEkEA8kXkPx+3IF75EHa4gjxVRGKbwohalA6eRRG9JYGN1xnsWi5XKD37LbfJriuCj2Qi5YEnZLEaiWgz++dfLhhrlKl+DbOvGzafz7T/rP94M/vH2of+rziQ5997g3j9PF8RzqlnPkty0GwjiJkUC5qutRyCMMEW9QqNhSJxU3uWJZNueVQtoqE6wKUQhJKzM+1iJ9Vw5SfGoUpP12ZHjgrxyk1dnFedrD2MMW8iRCzniOTEAJTfriKKUvzZeNYwwy75LPyGEOaIjzly9ZCmzryXEq3TKFPjSj06aokDdN1UGje1uz9oFDNS0jPCgCnMTuaD1npJaSjO/USEjFM7bX1u3zK0zDOJzkzb5Prel40qoHiuYaiYqhKsIQNYAnvFCyO4TjEdoDkNhgtatJnbVKkTWbZ0hVHiw5fO051r+8cVVB50cShvFjSiYBM9Bv41NzACBhAAgNNbIvb2HQgWrv2t6bCithfNhH7y/skdlO+OZUL2qQgeLPe+a/0rnid839Rcvgvq67+50au/udpV88Nm1DmOK6DmQNRv3uVp598W/6G9hDmOflpq1Ny8gQv5uWbFri/mOXEo/lgTJ+LRzdyKr6+XZ1SSjlBDmLbZYdvGcylk+bqmvzIrb3ikMcOVT4Om2nA8N5oADFs22Km5TAXQjtqYhPiCTOv0uRl48mKV9xMd9KDNeH5hlRGmKX94sHFp15oIP2jMKk+ABdfLL6Bay73ovp69mi5wZzqHq1pYDZV5rBMdcOHjapuyGs1qDVX1euqG1ilumFeSLR3VUi05p/7ubYXydnS+7DzxPP1fdmmbmODXs9GdU3auqddz9cV1/OxQar68VpS1evk49wKWJwXUxWHIuBRiurh9aWi9Z5/pviTZp4/uTeef63w3ECE9zroDmvS35lAv2qSBb9azuSv5bdnIEQj09nqug7T9sZHBN/lRwSvKoLca344sLfYscANCpUZmLjYZTbHlukyi7PiNM12HIiEIaV2bNvm174zsDd5IPBKy3ivuj/wS6P9gV/u7mlaE4tz8wVb9SSZcZo2kypLE2bjaAO2qFwvbRa0uf4DtL3qAVrBl1kHaL82Ys2vd/cA7e6yZoo7V7qZa2HQxvEIG/LXJi7dDBm/HSa9ErYo+CTwTGylH1O8klSzqTWLYL81IthvV7ol+y+3tB6CTdHsx5k0229Cqv2NohAt/VyH69o3VNmxP5sxs3jzeyPe/L728vv/E7dUv/trVaqF92SFdV5yrQqHPwhZOpy/GpeinSe7qCOy5OK/vQwRBxt55bYsz774owNCmR7hoepxAGOnIjvPUBr4fdQPoKc3ShG9rEqmU3XJETofpR6MEOmHPPUSecdhHPayL3S1MslvSdQARI+V1ymnATQVI6C+F3ZQGkP/+OJb9MDFD43Ft7WthX8/85bLkq18JyP/3fNlNrbjDdzYZqT5z/Pwysb2o8lfxJffi/8G48v/AVBLBwgY4h4VHg0AADhjAABQSwECFAAUAAgACADTle88GOIeFR4NAAA4YwAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAFgNAAAAAA==" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
<ggb_applet width="1080" height="620"  version="3.2" ggbBase64="UEsDBBQACAAIANOV7zwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V1Jc9s4Fj5P/wqUpqorOYjBxq1jd5fjbO44k6k401M1lxRFwRJjilRIytuf6cv8gd7S6833/k3zAJCyKFKyKFm27OlcZIEgCLzvfW8BHpWtr04HIToWSRrE0XaLGLiFROTH3SDqbbdG2WHbaX315WdbPRH3RCfx0GGcDLxsu8UM2pLto+DLz/62lfbjE+SFqss3gTjZbh16YSpaKB0mwuumfSGyUrs3Og3CwEvO3nQ+CD9LLy/oQfai4QiekiUjaPMH3f0gLb4+Ug8chkH2NDgOuiJBYexvtywTpg5/fSOSLPC9cLvFsW6hsC7HLV2EJiav9uMkOI+jTHa/HPwQWhBKg3MBd1LZtvVILXRLjPww6AZeJBej5gGdEDoJulkf+mJHjimCXh8maxFHD+fHcdI9OEszMUCn/xFJvN2ihEtJn+lvTH9LYWLwRBOrS5Pf1DDi+EBkGeCSIu9UXEqslwTd0pe99EkcXjYN4yDKdr1hNkoUqCxvOsjO5APgWYmc8E7UC0XeRkHmfeEfdeLTAy0Fpod+dzZUt6gJdXq7cRgnKIEbTBM65J8d/an6yJmOe2HVB6se+Rhy0PF14lLVQ3129KfqFQaRnlq+clKsmuDiMUGKZIMUI+jiePGh1xGAbQuNoiDbL76ADhzlSyX6hn+MBh0gwaQWjMck1zXm1qMp/dk6EkkkQq0kEWA7ikcpOpbaqJ+lJtIVfjCAr/pCLhJPwvUvmIBu7YpeIoqJawppgamreFIRp5q3HhWTkHNIYa5+BrYA1pPJtTwRJyJID4OoO4p6sOIuylsu/ugn0CSpnAGNpAi6XgZ3SLMgQjEQQKJM6YtSt7HcXrfGFiNW5C9onl+/RAAu1+qO0jIvHPY9aCnoEXpnYAoml6vGex13y0I4DE5FV7dcPklJJkWn2602NpgF9JO20HZa6FwbRdVL00YyXt3Ockz1Wq9Y9ZP3pLruskJNQH4bK2cG4/nCLdps4X48GHigGpE3gIXvBokfCrXaQJpx5GGJOvKIFoNe4SgrLvl6uHyQihxBKwN/LCS/VTYIWR94F4k0VVYrm7RPs1VsAUnj5eW80OTASYjoGKYWJylCpzj3vWdYPxCdFy2nRCmlvEbypnMygQ144yQ4RTtF/52i1w44uTbBBie2hcf/YB47LH/GDpd/SHXfMWVfqfB6ch8jvYBUG7R0CCboMPDn4/5PpfBl2P0K2jvz0S6zZmcFW2GS1SnjRWB5lTkE7z2UA0jbPhSimwu5wBQNYUjlXid0a8KqgIPnFmWWQ7hLXAebOdM4ZdSyOTYxtm2LWKvwbh/0bkr8O5p1rysoePNRkCo8FrK3JOUaW7cVOFc24KZlM2q63HUpZY62asywnCkEQNRtC5qhm0ktbpucm24TDk/RJBhAVOoH2XyY9qIMogKQUIUqCiuvgtXT3HQ2Ic7TK4gzAw2LKzjkR0d/XAMg69H9uc72ls1GyanSybVzWy2eGoRN6+jyxF/M8O420Z/dpSRIMZ+gs5TkrRtealgWx9yB1IxjiplWPm5YtsttiQwmxOTuKuI/ED3ZPgXA7izT25mPQ5qPVki6M9v6mssEPBBOdQMtWej+Ju/dvwHLTA2wtGWhKyowPAWQtMvMwKbNXE6YQ0zCLXOOXZ6Wwzy7rKAIpcaM7TDIopp0HQkxlNnum+hd4kWp3PYoh85L6sNORR+6zfShu/kB8KT5o6ZFseMwgjGzHVunVhBqMocSx7EZN4lt25p+pkE4BUdAKeUONe15mDfxxbeN+ZMK5qIZ5uIuYU4Nk1ObM4sTTFwAXrs803BdTB3uuCYD6LXDa1MCGgIxAOeuYzumie885juzMD9shvnhbMz5xmEOQbdNGFhpAibe4WDkHQW6bTCbcptZ1HWYa2HtZ9sEwiLbdQBt6prYcYud0oVWe7dQ7zVDvXeXmL5O1G+d6+J0mMBMZKCUi/WdOM0gCoUL263PP47i7PFBlgj/SKDd1+gkSLpIwBTEuQj8fiQy9PnfCX784BgG2DfQcZz0RE90RPRQ36ueV1aGDB7QKj9tY8O6NPOSTCUeSKqCZRDiTvxz8jAbT2w9wT9zMs6enc114jgUXjReZ1/JAR4/EhVQV9lIXnz9bw4PU4AUVsqpjltdcy5JvKECQ7Ud+P0kyDJEvrgqjwvPenE0K5FAHq2zMN8EMJ5/RHS3znuiO/rqD7bdGlyV9+mHFlIbD3e9hqheP4MqPsRkk3n4JESkiYrO1q5KhvV+Exe7eWnW7ZvkuTD69wvGRfcxuVW/kbnZznUukoN7heOMfKhdmxDd5Xyo3n29LvY9lFfaneW+qO7mv6e646BwX54+MWzswOitKRGmpVqIG/BgUmobuNqlOTPD9LXrz3DWdYRzG5bvFn3YOoBsz9gArN3/a9+tDcD5SHr3DMl7HFXWJvq0lOj3QpnUp35fREdh0BPowTsRhO2HTxMRqB0AleufiKQrItQTh6NI/iGrpQZechSIJFs86aerJv01KrGupB+7pX+5Tth0uTQ/2Kg0X29hgDFqnOfTK/J8VWpZHybtzsry//xufhSk6gHHMoHeU6LEBndtiDcJdSxsE8sqSLlYyUa9pn2oyr2oBNWSV6ZoLHu2oLaxOeaCTZkLL/EvD2qtojEM45O34jAUp0rWFW0SA5iSrN19Oy59nerTDL3xQY9Cr3rm++f3jdD7fjn0mpmJhuDxBcGrlOxuPHg7JerVgPdDI/B+mAYP7KBNHfCGrkMc22brQK7IXAufX6q9MO8tdLul5LIGuh8bQffjNHSmQYEFLiEYoh/imNZf2C2IXX1UxUpRVTcQ6CiOeiBACOci9ASGT0+C6EiECwRU6nTlYHSA0jgM5e3d8hCpl52jIxFF+Y1edCLkKA3OX9iqoVgN2msLxaxxWd3M6KsWE17C5ClgcjAaDASIM0VJnHpKeL3k4g8pyH9r0aKOCNCuBkkkvaCToQDuSeQJGPR6K/x+Nu6NHsiXdF4kF58uvhXIxQ8fq/u8kd9HAEkEA8kXkPx+3IF75EHa4gjxVRGKbwohalA6eRRG9JYGN1xnsWi5XKD37LbfJriuCj2Qi5YEnZLEaiWgz++dfLhhrlKl+DbOvGzafz7T/rP94M/vH2of+rziQ5997g3j9PF8RzqlnPkty0GwjiJkUC5qutRyCMMEW9QqNhSJxU3uWJZNueVQtoqE6wKUQhJKzM+1iJ9Vw5SfGoUpP12ZHjgrxyk1dnFedrD2MMW8iRCzniOTEAJTfriKKUvzZeNYwwy75LPyGEOaIjzly9ZCmzryXEq3TKFPjSj06aokDdN1UGje1uz9oFDNS0jPCgCnMTuaD1npJaSjO/USEjFM7bX1u3zK0zDOJzkzb5Prel40qoHiuYaiYqhKsIQNYAnvFCyO4TjEdoDkNhgtatJnbVKkTWbZ0hVHiw5fO051r+8cVVB50cShvFjSiYBM9Bv41NzACBhAAgNNbIvb2HQgWrv2t6bCithfNhH7y/skdlO+OZUL2qQgeLPe+a/0rnid839Rcvgvq67+50au/udpV88Nm1DmOK6DmQNRv3uVp598W/6G9hDmOflpq1Ny8gQv5uWbFri/mOXEo/lgTJ+LRzdyKr6+XZ1SSjlBDmLbZYdvGcylk+bqmvzIrb3ikMcOVT4Om2nA8N5oADFs22Km5TAXQjtqYhPiCTOv0uRl48mKV9xMd9KDNeH5hlRGmKX94sHFp15oIP2jMKk+ABdfLL6Bay73ovp69mi5wZzqHq1pYDZV5rBMdcOHjapuyGs1qDVX1euqG1ilumFeSLR3VUi05p/7ubYXydnS+7DzxPP1fdmmbmODXs9GdU3auqddz9cV1/OxQar68VpS1evk49wKWJwXUxWHIuBRiurh9aWi9Z5/pviTZp4/uTeef63w3ECE9zroDmvS35lAv2qSBb9azuSv5bdnIEQj09nqug7T9sZHBN/lRwSvKoLca344sLfYscANCpUZmLjYZTbHlukyi7PiNM12HIiEIaV2bNvm174zsDd5IPBKy3ivuj/wS6P9gV/u7mlaE4tz8wVb9SSZcZo2kypLE2bjaAO2qFwvbRa0uf4DtL3qAVrBl1kHaL82Ys2vd/cA7e6yZoo7V7qZa2HQxvEIG/LXJi7dDBm/HSa9ErYo+CTwTGylH1O8klSzqTWLYL81IthvV7ol+y+3tB6CTdHsx5k0229Cqv2NohAt/VyH69o3VNmxP5sxs3jzeyPe/L728vv/E7dUv/trVaqF92SFdV5yrQqHPwhZOpy/GpeinSe7qCOy5OK/vQwRBxt55bYsz774owNCmR7hoepxAGOnIjvPUBr4fdQPoKc3ShG9rEqmU3XJETofpR6MEOmHPPUSecdhHPayL3S1MslvSdQARI+V1ymnATQVI6C+F3ZQGkP/+OJb9MDFD43Ft7WthX8/85bLkq18JyP/3fNlNrbjDdzYZqT5z/Pwysb2o8lfxJffi/8G48v/AVBLBwgY4h4VHg0AADhjAABQSwECFAAUAAgACADTle88GOIeFR4NAAA4YwAADAAAAAAAAAAAAAAAAAAAAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAABAAEAOgAAAFgNAAAAAA==" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 +
==Video zum Beweis==
 +
Hier noch ein Video eines Stundenten, der seine Art der Beweisführung gefilmt hat.
 +
{{#ev:youtube|-hmTDm6x1wE}}
 +
 
=Formaler Beweis=
 
=Formaler Beweis=
 
Satz: Jeder Periepheriewinkel über dem Durchmesser eines Kreises k, ist ein rechter Winkel.<br />
 
Satz: Jeder Periepheriewinkel über dem Durchmesser eines Kreises k, ist ein rechter Winkel.<br />

Aktuelle Version vom 18. Juli 2012, 10:36 Uhr

Inhaltsverzeichnis

Satzfindung

Induktive Satzfindung

Funktionale Betrachtung

Variante 1

Variante 2

Variante 3

Beweisfindung

ikonisches/halbikonisches Beweisen

Video zum Beweis

Hier noch ein Video eines Stundenten, der seine Art der Beweisführung gefilmt hat.

Formaler Beweis

Satz: Jeder Periepheriewinkel über dem Durchmesser eines Kreises k, ist ein rechter Winkel.

Jetzt seid ihr gefragt!

Voraussetzung:

Behauptung:

Beweis: