Aufgabe 2: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Gubbel (Diskussion | Beiträge) (→NAF Spiegelungen mit a geschnitten b = S) |
Gubbel (Diskussion | Beiträge) (→NAF Spiegelungen mit a geschnitten b = S) |
||
Zeile 1: | Zeile 1: | ||
===NAF Spiegelungen mit a geschnitten b = S=== | ===NAF Spiegelungen mit a geschnitten b = S=== | ||
− | <ggb_applet width="960" height="562" version="4.0" ggbBase64="UEsDBBQACAgIACJ0c0EAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIACJ0c0EAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5VzbcttGEn1OvmKKW5WHlAnN/ZJISVmSnajKSVyRs7W1LykQGFGIQIABQF2c7Pt+xP7APuYb9j0fsV+yPTMAb6JkUpZsSmtLAjEYzKVPd8/pxoC7X1+OcnRuqzori70eiXAP2SIp06wY7vUmzUlf977+6tPdoS2HdlDF6KSsRnGz1+OuZpbu9VJDOEs16SfJCe5zPkj7hqW0P6CJGgih6AmDmuiyzr4oyu/jka3HcWKPk1M7il+VSdz4jk+bZvzFzs7FxUXUdRWV1XBnOBxEl3XaQzDMot7rtR++gOYWbrpgvjrFmOz87btXofl+VtRNXCS2h9wUJtlXn36ye5EVaXmBLrK0Od3rGSV76NRmw1OYkzSmh3ZcpTEIZGyTJju3Ndw6d+rn3IzGPV8tLtz1T8InlE+n00Npdp6lttrr4YiAFJhSmBuiMaO6h8oqs0XT1iVtnztda7vnmb0IzbpPvkfeQ01Z5oPYtYh+/x1RTDF65g4kHCgcpAyXcCjDLBxoOPBwEKEOD7fzUJWHOjzU4ayHzrM6G+R2r3cS5zVIMCtOKkBvel43V7n142kLZrMnz2BOdfYWKjMM4AeRQznGz9yvhF/uLuwsTpLM9dpUkw077bo0coMu6XtNlHV9EkGv90nFDdOUt3Qa5r3OPImYmyd05X/877Ue2W3TXO4xnL9fh5J/kCnu7nSmsttaB6pPXd1Wexo7qp29MIOEcWpPkADbkAq0XCBi4KAoAmtARCAu4JRoJN1RIabgAkcMaeTqEYa8cQgNf7jyjUkkoDFXqsAmEYGOOBIMEW9THIElIW+XYKOUQQ0hkICbXPeEuiaYRFzCGdOIwxidSSoCFRncCOfQPUWMIOZuJgpRiaRrj3Bn6lK7oUOTFEmMJHENglWDRQdrhvoaMTcb2YorK8aTZkFEySjtPjbleIoF1AZ/NPN6wT8tOMVPdvN4YHNYJ44dkgidx7mzCN/RSVk0qAORhrJhFY9Ps6Q+tk0Dd9Xol/g8fhU39vIl1K67vn3dpCzq11XZHJT5ZFTUCCVljqdjLnMy95lORw0nbO4Cn78g5i7Iuc9qZb8lXEGT2kL/ZVV31eM0PXI1Zq4BJPlDkV/tVzY+G5fZ4jR2d/ySs2snSZ6lWVz8FZTV9eLkgqYrkHNX3QokGO8GUlbp8VUNGowu/26rEkSrcKQklYpwragiooeuuisyUsYQxjk1GhYbGFkSO9NjPOKYKCENhsWHO7O8uuESCR3b8yk+8aWdTXVYObueOzmq98t8VuRnfxCPm0nlqQOMoXJzel4Mc+s1xDtbWJeTs0F5eRxUg4W23lyN4QyHEQyGXuoIPAMVMMlhexyEo6/jhjathX0d7GvgTteydHqdGOpr+OMgHH0tUN4wtHaqpJsmwV03We39Ge61VtP5Kqf6bpmfFFnzqjtpsuSsnSoJN3w/GQ3sVIEW2yT31ebuzpKG7Z7ZqrB5q9AA5qSc1ME+53Q9tUk2gtNwoRVJ7OD6CQYQSlM7rGw38NzTsiAwfxXP6+q1Yt/Uy6ocHRXnb0AXlgawu9ONcrdOqmzsdA4NYBE4szOtSrM6hjUknb/PWSBMPXFrBYincaIB25w0p2XlmRe4FDg6w8vtCHgWarx6eQ2divm5J3BOnqgc/AJebbrwheszwODySlXzShnn49PYkbx20nl8ZasFMfj2vivTZeGA7P0MwMTHAduxtUEtwnjhwxia89a04KJA2jW63Ov1cUQFB0egCaNEC6OBvl7BwCIooUwzAVcNEQzc/9vA7QO5dYJwBrjgskPpEoqgWkGG75Dm/uOXJo6c96TUKG4owUYJL0wVSWYIMeAngb8boR5clgdPQZaaG620YVxKQwVTXpY4EkQxg6li2oCQpXlwYR4+fmH2SWQkaCUH2quollpoL00oNiBkKo2WQCIUvR9pJuVoFBcpKjxXf13mV8Oy6M3YY4yd80QxcVaPYuoUFsXMiTrIcdJ01V6GavHPJFQc+A9QNYEDsLM09N32uALJ0HeH1cve4qLdAJs8g5C59syiaTmE//BtlqbWRxI7d8EffKbXAEFaUjFTAHKrAvxwclLbxqEmPUaC36wdN6twbYfubDpIJ8DbpzGnOGvOY0NFnlNHEWGhNKwwBPgj1Zi1tg06Kpl2Vxjoq6OaoI19FmENDJMzyjWWgopl6rU+ivbXItxSBz6UjcZ5lmTNVO9yZ0VHRQPsyHp6cJ30nFk7dmzzh+JNFRe1y2aFOnNkak1UBtuEiooAD3AB1AhhqOItJhxLVyDAfWgiJA2YyIhKRiSFaIJSTLR5OqAk2wMJ+G2uqfuhQMPAbQeX0KeRJkZSxplgRhkG0neo0EgRrcCEYLnUgjOungwo6RaBgh05ZlLAf6UZ1li1iynwaOxWVyUIxrqlJn0eCeCDGgMiwFgcKXysoCzyohd3g2SriJEAxh5W2UjxB2eS3zwBifGIy1bdyf1IbJEtvgKzWKKKLwIH/OYaOYxvJ3/OwmYE6L1Z/PrOY0bh+jTE01Ojf4dv4ZHEC/9CBAkuBxzI/L+WGhETMaP1w3iUddX62yeg1k6OQHI4ME2msWBB7syVOqcODlwJCETFg/uIoycgTAHksNNbfD+Zo3c6iW+Dkzi65iQGGziJwcdxEpKENYis5yRYxMWCVrbC5hFhSzrsfYSOOJB0rqQhijGlH4gV3gzXd1lVldXqBEB8DbDnn8Xjsv7yXYH9Qia2veWjJmoWnIlw4EhgiVwoI7rUFeOcYYGZlNoQrB/AMlaKev8mUe9vLur97RI1wZFSikIACqZgiCCipXOcKS4FMYZzrpS+H8e9hqwPbpL1weayPtguWavIhTeKUq2NxFp3Ll67JKIUihDwS5Q+hMNfKerDm0R9uLmoD7dL1KDWUoNSQ3gpCMGMT4UtwcGDwhvMFDC/h1DrG/K1rYBC1nZ6QmdaGjK4M9Ev5nHnb4/nbx/M355MT1xudz0YlzK8c0A+kjxvn4X1n91PpnctTd48X3L7bG7Ll/AItBV0GFRXKaFl9+yBUw5lTDMDiyQxIV3CRYSNEODMpaQafh9ttuRasnfbgJERsEEuiFJYOISCFvZZBNwF0FJYS4Yl48Gh9wWOuIuRDGOGQu3Hm8e6lvHdNmTcY3nMBTZUY6WgByVZG5ASZTCVmEjCDZeBQnIXpnKtYEUAaHS3D+cJIJNuHTIkotQYQMVwzKn2T/OvfDmjhnANQRYH0i9YeFBCaEQJY0JRgYnm17cNbTE06wRx88v64KZQ7s4B3UcgZddzd321rjsVihHHhCkYIZ1aLNijlNwYJoA+03vaSbNO1Hc7Nvt3xWZ/G7AhrM15rMmnSQTBIBcSoCGwhLXgOMeJjVSGcQgh/b76DxQl3o7NwV2xOdgCbEjgd2s6VB6B3GGlE0xwTLlh7f4zaqTggnqjAX74wWLK24E5vCswh1sATD8QPHBrayEjImEMBwQMrFtGku5BGdOac6PAbqhQ95QR3yACXRGHrohGV8Skt0emK+LTFVHqilh1RcT6HnHrI4xe22WS3vKIa+PodetoH45gVWfOFWEpNcFctdaAlXZmALxbKtUm3GVEGPyXDLi70eDEHhHpWyuG3TZ4aIQN59TtY3TRkm7JgYxcDg0iWeGX+AAPuDWmFXavu/ly/uTi2G1Dx23gM8RgzhUnlGpiur28SrpwCUuGjSKUtCETBLkacyxckIthkXmgx9sfL5zdNoAIODepNFdEYiUEd0B4fIx76VRgAbalIYRp3RuLlFv7wX40dVu0+SPCZ5FoTBteohrxTfzveBPOd3wnnud2vQ7DYRAOmzPwkGDV66EvaUSUdik/QYiSfm+Jz2ioCBRCKOcolSad/yTCvc7AOAE9kYoLzO+R+flXvZbAOApgHAcidn0X0J9/3A6Kf4loKnSo7e6HwUy6IUUuPGfKPViRhGB6NyoV+DnB1/cBrMukaBuUroTtPRJHcZXM4dLt88jz8uJHe5LbSy/0dU3mx7KJm2WI2mf5fYo+RyBgD9TxTdmgn8kdMkHv3Cj9cEFTcIb9NaOm5SwQ/XBZoJXQ7K8Fzf5doNn/KNBskuVZmeR5iHdcVor+YC3RH9xF9AfbJvrlNA5dmcb5YFp/uJboD+8i+sOP7ZDMRv5oOYsz3SCzmMa5n3cSN0jj+Pe4yLwTmU/fdG95LSC0Km3TNRMvNjNYbCaZO52lad6N+8oUTYv8Y0nP8DY9c8vmwo3TMw/w2tL9pWbal2QWUzPS3JCcwU8n/B9sHzjrJWbk/0tmZpugWc7KUCxWZWWI4SuzMvLpJDXT7QNnOSPDViVkRLuDeDkjo/Fj2mVgL8cVDMy9cdDK+Y29bECWcGGv99mvk7L58j//GkyKIRKf/YXgL/2f55OTIdRGdFYU//ef/x7s/Xb8j3CP72cR+AYa7i32cifE77bh/xrcdRNXzWvHqVBrkAKYGtAyzbHRTLUvoZhIUg5XFFdaK+20bUbV3i1JuiDJFzV6a7Nhg+osOX2G0riuka39GRrYDKUw8u+fv/RHL9XjcWaHNgfx2wLF8IMmQPAGaDJCFtQLHVb2FC76ulAGqoReT4qzBh2jUyBVNm8i9BPc8fYirtxNffr5n39EoenyojzN3RhcK5lNzhBaeAyG3FfLxBMYGtTxt3T1plSszqDturGN+0IcEENWJ6cRelFBEcjC3wOl7iv8UpROKtdUZtHCpHLbvJ3VnlVqZ2aLaH2FolulUDLCoDUCNMl96YOSsx3bym/4c8EZuBd5k0LtzH9Pjjvvvlfxq/8BUEsHCOhCpen1DQAA9FEAAFBLAQIUABQACAgIACJ0c0HWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAInRzQehCpen1DQAA9FEAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACMDgAAAAA=" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /> | + | <ggb_applet width="960" height="562" version="4.0" ggbBase64="UEsDBBQACAgIACJ0c0EAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIACJ0c0EAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s5VzbcttGEn1OvmKKW5WHlAnN/ZJISVmSnajKSVyRs7W1LykQGFGIQIABQF2c7Pt+xP7APuYb9j0fsV+yPTMAb6JkUpZsSmtLAjEYzKVPd8/pxoC7X1+OcnRuqzori70eiXAP2SIp06wY7vUmzUlf977+6tPdoS2HdlDF6KSsRnGz1+OuZpbu9VJDOEs16SfJCe5zPkj7hqW0P6CJGgih6AmDmuiyzr4oyu/jka3HcWKPk1M7il+VSdz4jk+bZvzFzs7FxUXUdRWV1XBnOBxEl3XaQzDMot7rtR++gOYWbrpgvjrFmOz87btXofl+VtRNXCS2h9wUJtlXn36ye5EVaXmBLrK0Od3rGSV76NRmw1OYkzSmh3ZcpTEIZGyTJju3Ndw6d+rn3IzGPV8tLtz1T8InlE+n00Npdp6lttrr4YiAFJhSmBuiMaO6h8oqs0XT1iVtnztda7vnmb0IzbpPvkfeQ01Z5oPYtYh+/x1RTDF65g4kHCgcpAyXcCjDLBxoOPBwEKEOD7fzUJWHOjzU4ayHzrM6G+R2r3cS5zVIMCtOKkBvel43V7n142kLZrMnz2BOdfYWKjMM4AeRQznGz9yvhF/uLuwsTpLM9dpUkw077bo0coMu6XtNlHV9EkGv90nFDdOUt3Qa5r3OPImYmyd05X/877Ue2W3TXO4xnL9fh5J/kCnu7nSmsttaB6pPXd1Wexo7qp29MIOEcWpPkADbkAq0XCBi4KAoAmtARCAu4JRoJN1RIabgAkcMaeTqEYa8cQgNf7jyjUkkoDFXqsAmEYGOOBIMEW9THIElIW+XYKOUQQ0hkICbXPeEuiaYRFzCGdOIwxidSSoCFRncCOfQPUWMIOZuJgpRiaRrj3Bn6lK7oUOTFEmMJHENglWDRQdrhvoaMTcb2YorK8aTZkFEySjtPjbleIoF1AZ/NPN6wT8tOMVPdvN4YHNYJ44dkgidx7mzCN/RSVk0qAORhrJhFY9Ps6Q+tk0Dd9Xol/g8fhU39vIl1K67vn3dpCzq11XZHJT5ZFTUCCVljqdjLnMy95lORw0nbO4Cn78g5i7Iuc9qZb8lXEGT2kL/ZVV31eM0PXI1Zq4BJPlDkV/tVzY+G5fZ4jR2d/ySs2snSZ6lWVz8FZTV9eLkgqYrkHNX3QokGO8GUlbp8VUNGowu/26rEkSrcKQklYpwragiooeuuisyUsYQxjk1GhYbGFkSO9NjPOKYKCENhsWHO7O8uuESCR3b8yk+8aWdTXVYObueOzmq98t8VuRnfxCPm0nlqQOMoXJzel4Mc+s1xDtbWJeTs0F5eRxUg4W23lyN4QyHEQyGXuoIPAMVMMlhexyEo6/jhjathX0d7GvgTteydHqdGOpr+OMgHH0tUN4wtHaqpJsmwV03We39Ge61VtP5Kqf6bpmfFFnzqjtpsuSsnSoJN3w/GQ3sVIEW2yT31ebuzpKG7Z7ZqrB5q9AA5qSc1ME+53Q9tUk2gtNwoRVJ7OD6CQYQSlM7rGw38NzTsiAwfxXP6+q1Yt/Uy6ocHRXnb0AXlgawu9ONcrdOqmzsdA4NYBE4szOtSrM6hjUknb/PWSBMPXFrBYincaIB25w0p2XlmRe4FDg6w8vtCHgWarx6eQ2divm5J3BOnqgc/AJebbrwheszwODySlXzShnn49PYkbx20nl8ZasFMfj2vivTZeGA7P0MwMTHAduxtUEtwnjhwxia89a04KJA2jW63Ov1cUQFB0egCaNEC6OBvl7BwCIooUwzAVcNEQzc/9vA7QO5dYJwBrjgskPpEoqgWkGG75Dm/uOXJo6c96TUKG4owUYJL0wVSWYIMeAngb8boR5clgdPQZaaG620YVxKQwVTXpY4EkQxg6li2oCQpXlwYR4+fmH2SWQkaCUH2quollpoL00oNiBkKo2WQCIUvR9pJuVoFBcpKjxXf13mV8Oy6M3YY4yd80QxcVaPYuoUFsXMiTrIcdJ01V6GavHPJFQc+A9QNYEDsLM09N32uALJ0HeH1cve4qLdAJs8g5C59syiaTmE//BtlqbWRxI7d8EffKbXAEFaUjFTAHKrAvxwclLbxqEmPUaC36wdN6twbYfubDpIJ8DbpzGnOGvOY0NFnlNHEWGhNKwwBPgj1Zi1tg06Kpl2Vxjoq6OaoI19FmENDJMzyjWWgopl6rU+ivbXItxSBz6UjcZ5lmTNVO9yZ0VHRQPsyHp6cJ30nFk7dmzzh+JNFRe1y2aFOnNkak1UBtuEiooAD3AB1AhhqOItJhxLVyDAfWgiJA2YyIhKRiSFaIJSTLR5OqAk2wMJ+G2uqfuhQMPAbQeX0KeRJkZSxplgRhkG0neo0EgRrcCEYLnUgjOungwo6RaBgh05ZlLAf6UZ1li1iynwaOxWVyUIxrqlJn0eCeCDGgMiwFgcKXysoCzyohd3g2SriJEAxh5W2UjxB2eS3zwBifGIy1bdyf1IbJEtvgKzWKKKLwIH/OYaOYxvJ3/OwmYE6L1Z/PrOY0bh+jTE01Ojf4dv4ZHEC/9CBAkuBxzI/L+WGhETMaP1w3iUddX62yeg1k6OQHI4ME2msWBB7syVOqcODlwJCETFg/uIoycgTAHksNNbfD+Zo3c6iW+Dkzi65iQGGziJwcdxEpKENYis5yRYxMWCVrbC5hFhSzrsfYSOOJB0rqQhijGlH4gV3gzXd1lVldXqBEB8DbDnn8Xjsv7yXYH9Qia2veWjJmoWnIlw4EhgiVwoI7rUFeOcYYGZlNoQrB/AMlaKev8mUe9vLur97RI1wZFSikIACqZgiCCipXOcKS4FMYZzrpS+H8e9hqwPbpL1weayPtguWavIhTeKUq2NxFp3Ll67JKIUihDwS5Q+hMNfKerDm0R9uLmoD7dL1KDWUoNSQ3gpCMGMT4UtwcGDwhvMFDC/h1DrG/K1rYBC1nZ6QmdaGjK4M9Ev5nHnb4/nbx/M355MT1xudz0YlzK8c0A+kjxvn4X1n91PpnctTd48X3L7bG7Ll/AItBV0GFRXKaFl9+yBUw5lTDMDiyQxIV3CRYSNEODMpaQafh9ttuRasnfbgJERsEEuiFJYOISCFvZZBNwF0FJYS4Yl48Gh9wWOuIuRDGOGQu3Hm8e6lvHdNmTcY3nMBTZUY6WgByVZG5ASZTCVmEjCDZeBQnIXpnKtYEUAaHS3D+cJIJNuHTIkotQYQMVwzKn2T/OvfDmjhnANQRYH0i9YeFBCaEQJY0JRgYnm17cNbTE06wRx88v64KZQ7s4B3UcgZddzd321rjsVihHHhCkYIZ1aLNijlNwYJoA+03vaSbNO1Hc7Nvt3xWZ/G7AhrM15rMmnSQTBIBcSoCGwhLXgOMeJjVSGcQgh/b76DxQl3o7NwV2xOdgCbEjgd2s6VB6B3GGlE0xwTLlh7f4zaqTggnqjAX74wWLK24E5vCswh1sATD8QPHBrayEjImEMBwQMrFtGku5BGdOac6PAbqhQ95QR3yACXRGHrohGV8Skt0emK+LTFVHqilh1RcT6HnHrI4xe22WS3vKIa+PodetoH45gVWfOFWEpNcFctdaAlXZmALxbKtUm3GVEGPyXDLi70eDEHhHpWyuG3TZ4aIQN59TtY3TRkm7JgYxcDg0iWeGX+AAPuDWmFXavu/ly/uTi2G1Dx23gM8RgzhUnlGpiur28SrpwCUuGjSKUtCETBLkacyxckIthkXmgx9sfL5zdNoAIODepNFdEYiUEd0B4fIx76VRgAbalIYRp3RuLlFv7wX40dVu0+SPCZ5FoTBteohrxTfzveBPOd3wnnud2vQ7DYRAOmzPwkGDV66EvaUSUdik/QYiSfm+Jz2ioCBRCKOcolSad/yTCvc7AOAE9kYoLzO+R+flXvZbAOApgHAcidn0X0J9/3A6Kf4loKnSo7e6HwUy6IUUuPGfKPViRhGB6NyoV+DnB1/cBrMukaBuUroTtPRJHcZXM4dLt88jz8uJHe5LbSy/0dU3mx7KJm2WI2mf5fYo+RyBgD9TxTdmgn8kdMkHv3Cj9cEFTcIb9NaOm5SwQ/XBZoJXQ7K8Fzf5doNn/KNBskuVZmeR5iHdcVor+YC3RH9xF9AfbJvrlNA5dmcb5YFp/uJboD+8i+sOP7ZDMRv5oOYsz3SCzmMa5n3cSN0jj+Pe4yLwTmU/fdG95LSC0Km3TNRMvNjNYbCaZO52lad6N+8oUTYv8Y0nP8DY9c8vmwo3TMw/w2tL9pWbal2QWUzPS3JCcwU8n/B9sHzjrJWbk/0tmZpugWc7KUCxWZWWI4SuzMvLpJDXT7QNnOSPDViVkRLuDeDkjo/Fj2mVgL8cVDMy9cdDK+Y29bECWcGGv99mvk7L58j//GkyKIRKf/YXgL/2f55OTIdRGdFYU//ef/x7s/Xb8j3CP72cR+AYa7i32cifE77bh/xrcdRNXzWvHqVBrkAKYGtAyzbHRTLUvoZhIUg5XFFdaK+20bUbV3i1JuiDJFzV6a7Nhg+osOX2G0riuka39GRrYDKUw8u+fv/RHL9XjcWaHNgfx2wLF8IMmQPAGaDJCFtQLHVb2FC76ulAGqoReT4qzBh2jUyBVNm8i9BPc8fYirtxNffr5n39EoenyojzN3RhcK5lNzhBaeAyG3FfLxBMYGtTxt3T1plSszqDturGN+0IcEENWJ6cRelFBEcjC3wOl7iv8UpROKtdUZtHCpHLbvJ3VnlVqZ2aLaH2FolulUDLCoDUCNMl96YOSsx3bym/4c8EZuBd5k0LtzH9Pjjvvvlfxq/8BUEsHCOhCpen1DQAA9FEAAFBLAQIUABQACAgIACJ0c0HWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAInRzQehCpen1DQAA9FEAAAwAAAAAAAAAAAAAAAAAXQAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACMDgAAAAA=" framePossible = "false" showResetIcon = "true" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "true" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" /><br /> |
--[[Benutzer:Gubbel|Gubbel]] 15:55, 19. Nov. 2012 (CET) | --[[Benutzer:Gubbel|Gubbel]] 15:55, 19. Nov. 2012 (CET) | ||
Version vom 19. November 2012, 15:55 Uhr
NAF Spiegelungen mit a geschnitten b = S
--Gubbel 15:55, 19. Nov. 2012 (CET)
NAF Spiegelungen mit a parallel b bzw. a=b
Bewege Punkt C und sieh was passiert :)
NAF Spiegelung mit a und b senkrecht
Was da wohl passiert ist?