Gruppen, abelsche Gruppen 2012 12: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (→Restklassen modulo 4) |
*m.g.* (Diskussion | Beiträge) (→Restklassen modulo 4) |
||
Zeile 7: | Zeile 7: | ||
<math>\overline{2}:=\left\{..., -6, -2, 2, 6, 10, ...\right\}</math> (Menge aller ganzen Zahlen, die bei Division durch 4 den Rest 2 lassen),<br /> | <math>\overline{2}:=\left\{..., -6, -2, 2, 6, 10, ...\right\}</math> (Menge aller ganzen Zahlen, die bei Division durch 4 den Rest 2 lassen),<br /> | ||
<math>\overline{3}:=\left\{..., -5, -1, 3, 7, 11, ...\right\}</math> (Menge aller ganzen Zahlen, die bei Division durch 4 den Rest 3 lassen),<br /> | <math>\overline{3}:=\left\{..., -5, -1, 3, 7, 11, ...\right\}</math> (Menge aller ganzen Zahlen, die bei Division durch 4 den Rest 3 lassen),<br /> | ||
+ | |||
+ | Wir definieren auf <math>\mathbb{Z}_4</math> eine Verknüpfung <math>\oplus</math> wie folgt:<br /> | ||
+ | <math>\forall \overline{a}, \overline{b} \in \matbb{Z}_4: \overline{a}\oplus \overline{b} := \overline{a+b}</math> |
Version vom 9. Dezember 2012, 17:33 Uhr
Beispiele für endliche Gruppen
Restklassen modulo 4
mit
(Menge aller durch 4 teilbaren ganzen Zahlen),
(Menge aller ganzen Zahlen, die bei Division durch 4 den Rest 1 lassen),
(Menge aller ganzen Zahlen, die bei Division durch 4 den Rest 2 lassen),
(Menge aller ganzen Zahlen, die bei Division durch 4 den Rest 3 lassen),
Wir definieren auf eine Verknüpfung wie folgt:
Fehler beim Parsen(Unbekannte Funktion „\matbb“): \forall \overline{a}, \overline{b} \in \matbb{Z}_4: \overline{a}\oplus \overline{b} := \overline{a+b}