Lösung von Aufg. 10.2 WS 12 13: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „<div style="margin:0; margin-right:4px; border:1px solid #27408B; padding: 1em 1em 1em 1em; background-color:#FFFF99; align:left;"> {|width=90%| style="background…“)
 
Zeile 3: Zeile 3:
 
| valign="top" |
 
| valign="top" |
 
<!--- Was hier drüber steht muss stehen bleiben --->
 
<!--- Was hier drüber steht muss stehen bleiben --->
 +
= Aufgabe 10.2 =
 +
Beweisen Sie Satz VII.6 a:
  
 +
::Wenn ein Punkt <math>\ P</math> zu den Endpunkten der Strecke <math>\overline{AB}</math> jeweils ein und denselben Abstand hat, so ist er ein Punkt der Mittelsenkrechten von <math>\overline{AB}</math>.
 
=Lösung von User ...=
 
=Lösung von User ...=
  

Version vom 12. Januar 2013, 17:01 Uhr

Aufgabe 10.2

Beweisen Sie Satz VII.6 a:

Wenn ein Punkt \ P zu den Endpunkten der Strecke \overline{AB} jeweils ein und denselben Abstand hat, so ist er ein Punkt der Mittelsenkrechten von \overline{AB}.

Lösung von User ...

Lösung von User ...