Serie 11 (WS 12 13): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 11.03)
(Aufgabe 11.03)
Zeile 44: Zeile 44:
 
Wegen dieser Identität geht die Mittelsenkrechte <math>m_c</math> durch den Punkt <math>C</math>. Wir haben uns schon überlegt, dass in diesem Fall <math>\overline{AC} \tilde= \overline{BC}</math> gilt. q.e.d.
 
Wegen dieser Identität geht die Mittelsenkrechte <math>m_c</math> durch den Punkt <math>C</math>. Wir haben uns schon überlegt, dass in diesem Fall <math>\overline{AC} \tilde= \overline{BC}</math> gilt. q.e.d.
 
=Aufgabe 11.03=
 
=Aufgabe 11.03=
Es sei <math>\alpha</math> ein Winkel mit den Schenkeln <math>g</math> und <math>h</math> und dem Scheitel <math>S</math>. Ferner sei <math>w</math> die Winkelhalbierende von <math>\alpha</math>, also ein Strahl im Inneren von <math>\alpha</math>, der als Anfangspunkt S hat und <math>\alpha</math> in zwei kongruente Teilwinkel <math>\alpha_1</math> und <math>\alpha_2</math> teilt. Auf <math>w</math> sei ein beliebiger von <math>S</math> verschiedener Punkt <math>P</math> gegeben.
+
Es sei <math>\alpha</math> ein Winkel mit den Schenkeln <math>g</math> und <math>h</math> und dem Scheitel <math>S</math>. Ferner sei <math>w</math> die Winkelhalbierende von <math>\alpha</math>, also ein Strahl im Inneren von <math>\alpha</math>, der als Anfangspunkt S hat und <math>\alpha</math> in zwei kongruente Teilwinkel <math>\alpha_1</math> und <math>\alpha_2</math> teilt. Auf <math>w</math> sei ein beliebiger von <math>S</math> verschiedener Punkt <math>P</math> gegeben. <math>F_g</math> sei der Fußpunkt des Lotes von <math>P</math> auf <math>h</math>.

Version vom 20. Januar 2013, 17:03 Uhr

Inhaltsverzeichnis

Aufgabe 11.01

Formulieren Sie die Umkehrung des Basiswinkelsatzes.

Lösung Aufgabe 11.01 WS_12_13

Aufgabe 11.02

Es seien A, B, C drei nicht kollineare Punkte. Die Winkel \alpha=\angle CAB und  \beta= \angle CBA seien kongruent zueinander.
Behauptung:

\overline{AC} \tilde= \overline{BC}


Ergänzen Sie den folgenden Beweis

(H) Hilfskonstruktion:

m_c sei die Mittelsenkrechte der Strecke \overline{AB}.
Begründung, dass die Hilfskonstruktion angewendet werden kann:
.................................................

Was wäre wenn

Wenn die Mittelsenkrechte m_c durch C gehen würde, wären die Strecken \overline{CA} und \overline{CB} kongruent zueinander.
Begründung hierfür:
..................................................

Was wäre wenn nicht

Annahme: C \not \in m_c


Nr. Beweischritt Begründung
(1) m_c schneidet o.B.d.A. \overline{CA} in einem Punkt, den wir c^* nennen wollen ...
(2) \overline{C^*A} \tilde= \overline{C^*B} ...
(3) \alpha \tilde= \angle C^*BA ...
(4) \beta \tilde= \alpha ...
(5) \beta \tilde= \angle C^*BA ...

Der Rest schreiben wir als kleinen Aufsatz:

Die beiden Winkel \beta und \angle C^*BA sind also nach der bisherigen Beweisführung kongruent bzw. haben dieselbe Größe.
Weil sie auch den Schenkel BA^+ gemeinsam haben und C und C^* in derselben Halbebene bzgl. AB liegen,
müssen die die Schenkel BC^+ und BC^{*+} nach dem ... identisch sein.
Wegen dieser Identität der beiden Strahlen BC^+ und BC^{*+} und weil C der Schnittpunkt von BC mit AC und C^{*} der Schnittpunkt von BC^* mit AC ist, sind ..... identisch.

Wegen dieser Identität geht die Mittelsenkrechte m_c durch den Punkt C. Wir haben uns schon überlegt, dass in diesem Fall \overline{AC} \tilde= \overline{BC} gilt. q.e.d.

Aufgabe 11.03

Es sei \alpha ein Winkel mit den Schenkeln g und h und dem Scheitel S. Ferner sei w die Winkelhalbierende von \alpha, also ein Strahl im Inneren von \alpha, der als Anfangspunkt S hat und \alpha in zwei kongruente Teilwinkel \alpha_1 und \alpha_2 teilt. Auf w sei ein beliebiger von S verschiedener Punkt P gegeben. F_g sei der Fußpunkt des Lotes von P auf h.