Lösung von Aufgabe 12.03 WS 12 13: Unterschied zwischen den Versionen
Baulim (Diskussion | Beiträge) (→Lösung User ...) |
Baulim (Diskussion | Beiträge) (→Lösung User ...) |
||
| Zeile 16: | Zeile 16: | ||
Versuchen Sie es einfach mal ohne die Punkte <math>P_g, P_h</math> aus den Übungsaufgaben. Es waren die Fußpunkte der Lote von <math>P</math> auf die Schenkel des Winkels. Die Länge der Lote von P auf die Schenkel ist jeweils der .... von P zu den Schenkeln.--[[Benutzer:*m.g.*|*m.g.*]] 22:58, 27. Jan. 2013 (CET) | Versuchen Sie es einfach mal ohne die Punkte <math>P_g, P_h</math> aus den Übungsaufgaben. Es waren die Fußpunkte der Lote von <math>P</math> auf die Schenkel des Winkels. Die Länge der Lote von P auf die Schenkel ist jeweils der .... von P zu den Schenkeln.--[[Benutzer:*m.g.*|*m.g.*]] 22:58, 27. Jan. 2013 (CET) | ||
| + | |||
| + | |||
| + | |||
| + | ... wenn die Winkelhalbierende den selben Abstand zu den Schenkeln von alpha hat. | ||
=Lösung User ...= | =Lösung User ...= | ||
Version vom 28. Januar 2013, 22:18 Uhr
Aufgabe 12.03In der vorangegangenen Übungsserie haben wir zwei Aufgaben zu Winkelhalbierenden gelöst. Diese Aufgaben bilden die Grundlage für ein Winkelhalbierendenkriterium. Ergänzen Sie dieses: Lösung User ...Pg den selben Abstand zu Ph hat. g und h sein die Schenkel des Winkels. --Yellow 21:21, 26. Jan. 2013 (CET)
... wenn die Winkelhalbierende den selben Abstand zu den Schenkeln von alpha hat. Lösung User ... |
, wenn ...
aus den Übungsaufgaben. Es waren die Fußpunkte der Lote von
auf die Schenkel des Winkels. Die Länge der Lote von P auf die Schenkel ist jeweils der .... von P zu den Schenkeln.--
