Lösung von Aufgabe 4.08 S SoSe 13: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (Die Seite wurde neu angelegt: „<div style="margin:0; margin-right:4px; border:1px solid #27408B; padding: 1em 1em 1em 1em; background-color:#FFFF99; align:left;"> {|width=80%| style="background…“) |
*m.g.* (Diskussion | Beiträge) |
||
Zeile 3: | Zeile 3: | ||
| valign="top" | | | valign="top" | | ||
<!--- ---------------------------------------------------------------- ---> | <!--- ---------------------------------------------------------------- ---> | ||
− | + | ==Aufgabe 4.08== | |
+ | Gegeben seien in der Ebene <math>\varepsilon</math> zwei nicht identische Geraden <math>a</math> und <math>b</math>. Sowohl <math>a</math> als auch <math>b</math> mögen durch eine dritte Gerade <math>c</math> jeweils in genau einem Punkt geschnitten werden. Beweisen Sie: Wenn bei diesem Schnitt kongruente Stufenwinkel entstehen, dann sind <math>a</math> und <math>b</math> parallel zueinander.<br /> | ||
+ | Hinweis: Führen Sie den Beweis indirekt, indem Sie annehmen, dass <math>a </math> und <math>b</math> nicht parallel sind. Jetzt dürfen Sie den schwachen Außenwinkelsatz (Jeder Außenwinkel ist größer als jeder nichtanliegende Innenwinkel.) anwenden.<br /> | ||
==Lösung User ...== | ==Lösung User ...== |
Version vom 13. Mai 2013, 13:54 Uhr
Aufgabe 4.08Gegeben seien in der Ebene zwei nicht identische Geraden und . Sowohl als auch mögen durch eine dritte Gerade jeweils in genau einem Punkt geschnitten werden. Beweisen Sie: Wenn bei diesem Schnitt kongruente Stufenwinkel entstehen, dann sind und parallel zueinander. Lösung User ...Lösung User ...Lösung User ...
|