Lösung von Aufgabe 9.1P (SoSe 13): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 9: Zeile 9:
 
|}
 
|}
 
<br />
 
<br />
Definitionen gehören nicht in die Voraussetzung, sondern nur die "Mitspieler". Es ist sinnvoll sich die Definitionen am Rand zu notieren und in den Begründungsschritten dann Def. ... zu schreiben, wenn man sie verwendet hat. In seltenen Fällen v.a. dann wenn es mehrere Definitionen eines Begriffs gibt, kann man die Definition dann in der Begründung auch explizit nennen. --[[Benutzer:Tutorin Anne|Tutorin Anne]] 11:47, 16. Jul. 2013 (CEST)
+
 
  
 
{| class="wikitable"  
 
{| class="wikitable"  
Zeile 39: Zeile 39:
  
 
A͞B := {P | Zw(A,P,B)} ∪ {A,B}<br />
 
A͞B := {P | Zw(A,P,B)} ∪ {A,B}<br />
mit A ≠ B, A,B ∈ Ebene E<br />--[[Benutzer:Nolessonlearned|Nolessonlearned]] 18:39, 14. Jul. 2013 (CEST)
+
mit A ≠ B, A,B ∈ Ebene E<br />--[[Benutzer:Nolessonlearned|Nolessonlearned]] 18:39, 14. Jul. 2013 (CEST)<br />
 
+
Definitionen gehören nicht in die Voraussetzung, sondern nur die "Mitspieler". Es ist sinnvoll sich die Definitionen am Rand zu notieren und in den Begründungsschritten dann Def. ... zu schreiben, wenn man sie verwendet hat. In seltenen Fällen v.a. dann wenn es mehrere Definitionen eines Begriffs gibt, kann man die Definition dann in der Begründung auch explizit nennen. --[[Benutzer:Tutorin Anne|Tutorin Anne]] 11:47, 16. Jul. 2013 (CEST)
 
'''Behauptung''': AB+ ≌ A'B'+<br />--[[Benutzer:Nolessonlearned|Nolessonlearned]] 18:39, 14. Jul. 2013 (CEST)
 
'''Behauptung''': AB+ ≌ A'B'+<br />--[[Benutzer:Nolessonlearned|Nolessonlearned]] 18:39, 14. Jul. 2013 (CEST)
 
<br />
 
<br />

Version vom 16. Juli 2013, 10:48 Uhr

Beweisen Sie die Halbgeradentreue der Geradenspiegelung. Nutzen Sie für den Beweis die Streckentreue der Geradenspiegelung und eine geeignete Definition des Begriffs Halbgerade.


Voraussetzung Sg mit A'= Sg (A) und B' = Sg (B) und P \in AB^{+}
Behauptung Sg (AB+) = A'B'^{+} d.h. P' \in A'B'^{+}



Beweisschritt Begründung
1 P \in AB^{+} Voraussetzung
2 P \in \  \  \overline{AB}   \cup  \{P|ZW (A,B,P)\} 1), Def Halbgerade
3 P \in \overline{A'B'} Streckentreue
4 P \in \overline{AB}  + \overline{BP} = \overline{AP} Def Zwischen
5 P \in \overline{A'B'}  + \overline{B'P'} = \overline{A'P'} Abstandserhaltung der Geradenspiegelung
6 P' \in \  \  \overline{A'B'}   \cup  \{P'|ZW (A',B',P')\} Def Zwischen 3), 5)
7 P' \in A'B'^{+} Def Halbgerade 6)

--Regenschirm 17:50, 25. Jun. 2013 (CEST) Die Beweisidee und Schritte sind super. Es fehlen noch ein paar Striche und Klammern, damit der Beweis auch ganz richtig ist.--Tutorin Anne 15:18, 26. Jun. 2013 (CEST)



Voraussetzung:
AB+ ≔ {P | Zw(A,P,B) ∨ Zw(A,B,P)} ∪ {A,B}
mit A ≠ B, A,B ∈ Ebene E

A͞B := {P | Zw(A,P,B)} ∪ {A,B}
mit A ≠ B, A,B ∈ Ebene E
--Nolessonlearned 18:39, 14. Jul. 2013 (CEST)

Definitionen gehören nicht in die Voraussetzung, sondern nur die "Mitspieler". Es ist sinnvoll sich die Definitionen am Rand zu notieren und in den Begründungsschritten dann Def. ... zu schreiben, wenn man sie verwendet hat. In seltenen Fällen v.a. dann wenn es mehrere Definitionen eines Begriffs gibt, kann man die Definition dann in der Begründung auch explizit nennen. --Tutorin Anne 11:47, 16. Jul. 2013 (CEST)

Behauptung: AB+ ≌ A'B'+
--Nolessonlearned 18:39, 14. Jul. 2013 (CEST)

Beweisschritt Begründung
1) B'= Sg(B) Eigenschaft d. GS
2) A'= Sg(A) Eigenschaft d. GS
3) \ \overline{AB}  \tilde {=} \ \overline{A'B'} (1); (2); Voraussetzung; Streckentreue d. GS
4) \overline{AB}\subseteq \ AB^{+} Voraussetzung; Def. Halbgerade
5) \overline{A'B'}\subseteq \ A'B'^{+} (1); (2); (3); Voraussetzung; Def. Halbgerade; Streckentreue d. GS
6) Fehler beim Parsen(Syntaxfehler): \\ AB^{+}\ \tilde {=} \ A'B'^{+} (4); (5);

q.e.d.


--Nolessonlearned 18:57, 14. Jul. 2013 (CEST)

Schritt 6 kannst du nicht aus 4) und 5) herleiten, da eine Halbgerade ja noch aus weiteren Punkten besteht, die nicht auf der STrecke liegen. Diese könnten ja nicht aufeinander abgebildet werden. --Tutorin Anne 11:47, 16. Jul. 2013 (CEST)