Der Basiswinkelsatz WS 14/15: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(Die Seite wurde neu angelegt: „== Der Basiswinkelsatz == === Gleichschenklige Dreiecke === ===== Definition VIII.1 : (gleichschenkliges Dreieck) ===== Das können sie selbst. Bringen Sie in …“) |
(→Satz VIII.1: (Basiswinkelsatz)) |
||
Zeile 23: | Zeile 23: | ||
| [[Bild:gleichschenklig_2.png| 200 px]] | | [[Bild:gleichschenklig_2.png| 200 px]] | ||
| <math>\left| AC \right|=\left| BC \right|</math> | | <math>\left| AC \right|=\left| BC \right|</math> | ||
− | | | + | | Behauptung |
|- | |- | ||
| (2) | | (2) | ||
| <br /><br />[[Bild:gleichschenklig_3.png| 200 px]] | | <br /><br />[[Bild:gleichschenklig_3.png| 200 px]] | ||
| <math>C\in m</math> mit <math>m</math> ist Mittelsenkrechte von <math>\overline{AB}</math> | | <math>C\in m</math> mit <math>m</math> ist Mittelsenkrechte von <math>\overline{AB}</math> | ||
− | | . | + | | 1.), Mittelsenkrechtenkriterium |
|- | |- | ||
| (3) | | (3) | ||
| <br /><br /><br /> | | <br /><br /><br /> | ||
| <math>B=S_{m}(A)</math> | | <math>B=S_{m}(A)</math> | ||
− | | | + | | Eigenschaften Geradenspiegelung |
|- | |- | ||
| (4) | | (4) | ||
| <br /><br /><br /> | | <br /><br /><br /> | ||
| <math>C=S_{m}(C)</math> | | <math>C=S_{m}(C)</math> | ||
− | | | + | | C ist Fixpunkt |
|- | |- | ||
| (5) | | (5) | ||
| <br /><br /><br /> | | <br /><br /><br /> | ||
| <math>M=S_{m}(M)</math> | | <math>M=S_{m}(M)</math> | ||
− | | | + | | M ist Fixpunkt |
|- | |- | ||
| (6a) | | (6a) | ||
| <br /><br /><br /> | | <br /><br /><br /> | ||
| <math> S_{m} (\angle MAC ) = \angle MBC </math> | | <math> S_{m} (\angle MAC ) = \angle MBC </math> | ||
− | |... | + | | 3.), 4.), 5.) |
|- | |- | ||
|- | |- | ||
Zeile 54: | Zeile 54: | ||
| <br /><br /><br /> | | <br /><br /><br /> | ||
| <math>\angle MAC \tilde {=} \angle MBC </math> | | <math>\angle MAC \tilde {=} \angle MBC </math> | ||
− | | | + | | Winkelmaßerhaltung, 6a) |
|- | |- | ||
|} | |} |
Aktuelle Version vom 15. Dezember 2014, 17:26 Uhr
Inhaltsverzeichnis |
Der Basiswinkelsatz
Gleichschenklige Dreiecke
Definition VIII.1 : (gleichschenkliges Dreieck)
Das können sie selbst. Bringen Sie in der Definition die Begriffe Basis, Basiswinkel und Schenkel eines gleichschenkligen Dreiecks unter.
Übungsaufgabe
Der Basiswinkelsatz
Satz VIII.1: (Basiswinkelsatz)
- In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
- In jedem gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
Beweis:
Voraussetzung: ...
Behauptung: ...