Satz des Thales: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Test)
Zeile 13: Zeile 13:
 
==Beweisführung==
 
==Beweisführung==
 
<ggb_applet width="1280" height="855"  version="3.2" ggbBase64="UEsDBBQACAAIAHp86TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VtLc9u2Fl7f/gqMFl10JjJAgK+5VjqSnTjpxDedOG1n7iZDUZCEa4pUScqW9avaJul71e77m+4BQMqkqIcpy4mcsTc0ARA4ON/5zgOkDr+cjgJ0weNERGGrQZq4gXjoRz0RDlqNSdp/5DS+fPzZ4YBHA96NPdSP4pGXthq0aTRk+0Q8/uxfh8kwukReoIZ8K/hlq9H3goQ3UDKOuddLhpynpXZvMhWB8OKrl93/cT9Nrjv0JM/D8QRWSeMJtPmj3guR5LcHasFxINJjcSF6PEZB5Lcalgmiw3/f8jgVvhe0GgzrFqPVMBY6oYnK3mEUi1kUpnL49eR9aEEoETMOGnFk2+GB2ughn/iB6AkvlJtRcsAghC5FLx3CWMORc3IxGIKwjkn1dH4Uxb2zqyTlIzT9L48jEM20pKav9B21TXmXgGCwoolVV/FOTcMvzniaAi4J8qb8WmODWPRKN8+TThRcN40jEaZH3jidxApUmjWdpVdyAVgrlgK3w0HAszYDdD7k/nk3mp5pLVA99eursXpECdQdHEVBFKNY6teEAdm1q69qjJR0PgqrMViNyOaQk877iWuoEera1Vc1KhChFi3bOcl3TXC+jEiQbJBqBFucbz7wuhywbaBJKNIX+Q3YwHm2VaIf+M9k1AUSFK1gPifZ1ZyHBwv2c3jO45AH2khCwHYSTRJ0Ia1Rr6UE6XFfjOBWd2Qq8SRc34AAurXHBzHPBdcU0gpTvbhoiAvNhwe5EFKGBGT1U/AFsJ9U7kVSNQWatBqnXzVQz0tlm5zsMorPFa9f82mKvG50AT0dfslF0v/7z2E8CQcAIg+k4r4TMZpx4Q9DHqIw8oeoJzg6S2OwMY5OO60YcRE20bHXm8TQy8MU2DKEwTOYD8FO4dkETDI8D8SAo+OYC/XoCPbfg2HyAfA0coS87XiJSC5FeM4DmLX9TX8A4vSQ9BXfqdZkMhpxJEb5TIjHoDN4MgG5ZpPEg+4QEQf/9QNIBY8N4r//DDnKZxnLWbK5rsfPJ4mkXK58WGmYBxy6U5Qq9ijyza3otDH3n5FyhbnTy/qv7RG6lzJJcc4LxkMPWnJnEXhXIGYRfDXfadQrm4QXgmkpvEHhYzmBNN4x570sGKQZ49EYplT+o2CZyqASNG01HsHKQNorJQL8M9OPq1Ha20hHqVamGRW0Ujaop/1pqIc1XWdL7fjRaOSB2YXeCFY6ErEfcKUUIUMk8rC0IeQRqSutiEmad/h6smyKiqqB78Kfq9JvlF1tOgSPFvIkUfEgLXr+1XgUdr8KELw9HDcSDsIvDy9AtChOEJriDKkrrBdEs7xlSrTdQh/JmmakgAwgH4spaufj2/moNqQPjwzA1JWBqk2zidssx7dt5ozQEn0faqkTHR/AgHzRF/56qF/AZheAbmugTytAe+uBlnqbQ+RtiXM5+m0m3i1wviaOhge0qTKkmWZgDVtY0LwYQd7oi3S95p+HKcRt2PSC+n2tfg8uMqfMd1XA4Wg9DmXfdrSVb7OY0rG8dPXl9lqW2t3We5dVd8YHsn1BcUerHFR3vb6SbLZcI93Vpmvv0kXdKmZUjZfgzHjBJ1Qy2jV7WGe9So2BDDlza4UwVU0ezzkfy6z9Zfg69sJElm96TCEpXRGJS16jt//RYVfBGhamzMWW6ZiYuo5jmW7OjWr7LPNNd+2TvlauY9EfLfKpU8f/dLbyP8TQpZ667kt+hZumgQ3XdDF1mIFdSwEmIzS2DYMSkzLbcG7l2b6OgqtBFC73bB0dEqoODuq8AOoLkkWON0QP9NU/kDh035BNkOllc1DmE94dHfNi3iQKYHmZ40vq4LvatSw6dqmYj7Oh7WMmWJddtC6qbM5smmzBEqWLMMBHWNShxGWEGJhA+248xgeIA4tg+fcPrOVYsSYzoZ0BSsS0XcwyrFjTYZS6xCAGNQ2L3l+ouvcPqnnGP8+a1idNHx2BcphQx6g1g8Q/P66PAeqsbw4GjJbPgzyTTIekaYJ1uxY1LNtljmtZG8u3tZkYwdVczLwhnnXyWy/2r8OvlTcGQXT5ivcDPlW6LCse8B2BRPLY/dX81HoBv7rVSWdVVc3rVSf8flUny30ilCjLAhhEfoINA1OLQRSzHdu097mQuQns2anZUQX2fj3Y+/cL9iUnKthd+PtEoK162kE9aAf7X/RWgTWvDxt2dVT2keLmnKEqbnaqcfOnWnHzp8W4iZs2JYZlOBA2LVt6t1smQsuIuovAuYjVBw+cm7OaavT8520tdN4+oLNLdE435ZzvaqHzroqOQ12TUmY6jmFbtrUtOgQbpU8HSlXELuAx9xGeTh6hVpHnfS143j/AUwOedYeix9VD0RqV0x69ciZUJvKFP5KV1U1Sapbtu3pb/2TDifK90R1pUmeuLuc2x8avotRLF9l/rNkPGYmi/5MK/Y8/98ZR8u/1PmDBcLNHtjPfu3irSIymaxHMqEstIo/nWfYaxXANg1GDYBebzHJvpd9lzjVT7xOt3YIuyy7251ou9ueN+Yn54GJrkSDDRVPh7QYqbE2I/aOFPK6jFgODIS61MbYzWrg2sWzGsM0sbFsG2zktigovk2MVRX6pRZFfNlKEPVBkC4qUiPLuRkS5JV32jjRu08W2bVq242KXmZRknGG4GGBozVzmxpzZxJxV/Pm1Fn9+3ZjFb8ufuy6B7wF9SiR6v4pET+tQ5uleEQTca+HPyNPXcjO+q6iykidPq6z4rRYrftvICuOBFTepzk4+mdIWrFrXEo9o0ynbN91dNfvsE6lm3SbOill2F8XsSbmYfVbh+0n9ZORk7xIQArkGsyljlsNcSN5Z9rrUaEIFa9rYgjZIUIya9rfZv2bqfaa1e7Iq0/i9lk/9fWOmvuwTgodMfTUJipGPmU381w/oC5Qn6ys5sTUz9o4fbpMQA+IxZS41LGLRPP9wXcyAFo5lmSYzpVXsmB9FzZdZsoorf9Tiyh9VrlgmVBwOppZlU3AGH/7F1Mt+P+Gp+gwxq4TuH4+W/L4le6XovyEV0IbrMSt9qz7cyS9cPtR7+zrfJspPEwufke7qu7htfoTkLQFJ1ABJ3CuQan3tCyhZd/EBaRGmg+KPdeV9/gv9x/8HUEsHCFpZLGYbCQAA0z8AAFBLAQIUABQACAAIAHp86TxaWSxmGwkAANM/AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAVQkAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 
<ggb_applet width="1280" height="855"  version="3.2" ggbBase64="UEsDBBQACAAIAHp86TwAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7VtLc9u2Fl7f/gqMFl10JjJAgK+5VjqSnTjpxDedOG1n7iZDUZCEa4pUScqW9avaJul71e77m+4BQMqkqIcpy4mcsTc0ARA4ON/5zgOkDr+cjgJ0weNERGGrQZq4gXjoRz0RDlqNSdp/5DS+fPzZ4YBHA96NPdSP4pGXthq0aTRk+0Q8/uxfh8kwukReoIZ8K/hlq9H3goQ3UDKOuddLhpynpXZvMhWB8OKrl93/cT9Nrjv0JM/D8QRWSeMJtPmj3guR5LcHasFxINJjcSF6PEZB5Lcalgmiw3/f8jgVvhe0GgzrFqPVMBY6oYnK3mEUi1kUpnL49eR9aEEoETMOGnFk2+GB2ughn/iB6AkvlJtRcsAghC5FLx3CWMORc3IxGIKwjkn1dH4Uxb2zqyTlIzT9L48jEM20pKav9B21TXmXgGCwoolVV/FOTcMvzniaAi4J8qb8WmODWPRKN8+TThRcN40jEaZH3jidxApUmjWdpVdyAVgrlgK3w0HAszYDdD7k/nk3mp5pLVA99eursXpECdQdHEVBFKNY6teEAdm1q69qjJR0PgqrMViNyOaQk877iWuoEera1Vc1KhChFi3bOcl3TXC+jEiQbJBqBFucbz7wuhywbaBJKNIX+Q3YwHm2VaIf+M9k1AUSFK1gPifZ1ZyHBwv2c3jO45AH2khCwHYSTRJ0Ia1Rr6UE6XFfjOBWd2Qq8SRc34AAurXHBzHPBdcU0gpTvbhoiAvNhwe5EFKGBGT1U/AFsJ9U7kVSNQWatBqnXzVQz0tlm5zsMorPFa9f82mKvG50AT0dfslF0v/7z2E8CQcAIg+k4r4TMZpx4Q9DHqIw8oeoJzg6S2OwMY5OO60YcRE20bHXm8TQy8MU2DKEwTOYD8FO4dkETDI8D8SAo+OYC/XoCPbfg2HyAfA0coS87XiJSC5FeM4DmLX9TX8A4vSQ9BXfqdZkMhpxJEb5TIjHoDN4MgG5ZpPEg+4QEQf/9QNIBY8N4r//DDnKZxnLWbK5rsfPJ4mkXK58WGmYBxy6U5Qq9ijyza3otDH3n5FyhbnTy/qv7RG6lzJJcc4LxkMPWnJnEXhXIGYRfDXfadQrm4QXgmkpvEHhYzmBNN4x570sGKQZ49EYplT+o2CZyqASNG01HsHKQNorJQL8M9OPq1Ha20hHqVamGRW0Ujaop/1pqIc1XWdL7fjRaOSB2YXeCFY6ErEfcKUUIUMk8rC0IeQRqSutiEmad/h6smyKiqqB78Kfq9JvlF1tOgSPFvIkUfEgLXr+1XgUdr8KELw9HDcSDsIvDy9AtChOEJriDKkrrBdEs7xlSrTdQh/JmmakgAwgH4spaufj2/moNqQPjwzA1JWBqk2zidssx7dt5ozQEn0faqkTHR/AgHzRF/56qF/AZheAbmugTytAe+uBlnqbQ+RtiXM5+m0m3i1wviaOhge0qTKkmWZgDVtY0LwYQd7oi3S95p+HKcRt2PSC+n2tfg8uMqfMd1XA4Wg9DmXfdrSVb7OY0rG8dPXl9lqW2t3We5dVd8YHsn1BcUerHFR3vb6SbLZcI93Vpmvv0kXdKmZUjZfgzHjBJ1Qy2jV7WGe9So2BDDlza4UwVU0ezzkfy6z9Zfg69sJElm96TCEpXRGJS16jt//RYVfBGhamzMWW6ZiYuo5jmW7OjWr7LPNNd+2TvlauY9EfLfKpU8f/dLbyP8TQpZ667kt+hZumgQ3XdDF1mIFdSwEmIzS2DYMSkzLbcG7l2b6OgqtBFC73bB0dEqoODuq8AOoLkkWON0QP9NU/kDh035BNkOllc1DmE94dHfNi3iQKYHmZ40vq4LvatSw6dqmYj7Oh7WMmWJddtC6qbM5smmzBEqWLMMBHWNShxGWEGJhA+248xgeIA4tg+fcPrOVYsSYzoZ0BSsS0XcwyrFjTYZS6xCAGNQ2L3l+ouvcPqnnGP8+a1idNHx2BcphQx6g1g8Q/P66PAeqsbw4GjJbPgzyTTIekaYJ1uxY1LNtljmtZG8u3tZkYwdVczLwhnnXyWy/2r8OvlTcGQXT5ivcDPlW6LCse8B2BRPLY/dX81HoBv7rVSWdVVc3rVSf8flUny30ilCjLAhhEfoINA1OLQRSzHdu097mQuQns2anZUQX2fj3Y+/cL9iUnKthd+PtEoK162kE9aAf7X/RWgTWvDxt2dVT2keLmnKEqbnaqcfOnWnHzp8W4iZs2JYZlOBA2LVt6t1smQsuIuovAuYjVBw+cm7OaavT8520tdN4+oLNLdE435ZzvaqHzroqOQ12TUmY6jmFbtrUtOgQbpU8HSlXELuAx9xGeTh6hVpHnfS143j/AUwOedYeix9VD0RqV0x69ciZUJvKFP5KV1U1Sapbtu3pb/2TDifK90R1pUmeuLuc2x8avotRLF9l/rNkPGYmi/5MK/Y8/98ZR8u/1PmDBcLNHtjPfu3irSIymaxHMqEstIo/nWfYaxXANg1GDYBebzHJvpd9lzjVT7xOt3YIuyy7251ou9ueN+Yn54GJrkSDDRVPh7QYqbE2I/aOFPK6jFgODIS61MbYzWrg2sWzGsM0sbFsG2zktigovk2MVRX6pRZFfNlKEPVBkC4qUiPLuRkS5JV32jjRu08W2bVq242KXmZRknGG4GGBozVzmxpzZxJxV/Pm1Fn9+3ZjFb8ufuy6B7wF9SiR6v4pET+tQ5uleEQTca+HPyNPXcjO+q6iykidPq6z4rRYrftvICuOBFTepzk4+mdIWrFrXEo9o0ynbN91dNfvsE6lm3SbOill2F8XsSbmYfVbh+0n9ZORk7xIQArkGsyljlsNcSN5Z9rrUaEIFa9rYgjZIUIya9rfZv2bqfaa1e7Iq0/i9lk/9fWOmvuwTgodMfTUJipGPmU381w/oC5Qn6ys5sTUz9o4fbpMQA+IxZS41LGLRPP9wXcyAFo5lmSYzpVXsmB9FzZdZsoorf9Tiyh9VrlgmVBwOppZlU3AGH/7F1Mt+P+Gp+gwxq4TuH4+W/L4le6XovyEV0IbrMSt9qz7cyS9cPtR7+zrfJspPEwufke7qu7htfoTkLQFJ1ABJ3CuQan3tCyhZd/EBaRGmg+KPdeV9/gv9x/8HUEsHCFpZLGYbCQAA0z8AAFBLAQIUABQACAAIAHp86TxaWSxmGwkAANM/AAAMAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYS54bWxQSwUGAAAAAAEAAQA6AAAAVQkAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
 +
=induktive Satzfindung=
  
 
=Sehnen verschieben=
 
=Sehnen verschieben=

Version vom 13. Juli 2010, 13:25 Uhr

Inhaltsverzeichnis

Test

Hier geben Ihnen die Didaktikspezialisten Tipps zum Satz des Thales

Geogebratest

noch ein Test


Funktionale Betrachtung


Beweisführung

induktive Satzfindung

Sehnen verschieben

--Mirasol 13:52, 9. Jul. 2010 (UTC) Bewege den Punkt A, um die Sehne zu verschieben!

induktive Satzfindung einer Umkehrung

(vgl. Idee von Frau "komplizierter Doppelname" in einer alten Klausur)
Kann bitte jemand den Satz auf richtige Formulierung kontrollieren?!
Welche speziellen Art der Einführung von Sätzen im induktiven Bereich lässt sich dieses Beispiel zuordnen?

Funktional