Lösung von Aufgabe 1.3 (SoSe 17): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 6: Zeile 6:
 
[[Kategorie:Geo_P]]
 
[[Kategorie:Geo_P]]
 
M1 c M2  und M1 c M3 (da nicht alle Winkel und Seiten gleich sind)  
 
M1 c M2  und M1 c M3 (da nicht alle Winkel und Seiten gleich sind)  
M3 = M´2   (da wenn alle Winkel gleich sind auch alle Seiten automatisch gleich sind)
+
M3 = M2   (da wenn alle Winkel gleich sind auch alle Seiten automatisch gleich sind)
 +
 
 +
Hallo Kissa052,<br/>
 +
deine Aussagen bezüglich den Winkel und Seiten der Dreiecke ist richtig ;) <br/>
 +
Du hast nur das Teilmengenzeichen falsch herum gesetzt.
 +
<math> M_2 \subset M_1 </math> (sprich: Menge <math> M_2 </math> ist eine (echte) Teilmenge von Menge <math> M_1 </math> ,
 +
also es gibt weniger gleichseitige, als gleichschenklige Dreiecke, jedoch ist jedes gleichseitige Dreieck auch gleichschenklig, aber nicht umgekehrt)
 +
sowie <math> M_3 \subset M_1 </math>.
 +
Deine Aussage <math> M_3=M_2 </math> stimmt. Setzen wir alles Zusammen erhalten wir: <math> M_2 = M_3 \subset M_1 </math>.<br><br/>
 +
--[[Benutzer:Tutor: Alex|Tutor: Alex]] ([[Benutzer Diskussion:Tutor: Alex|Diskussion]]) 17:34, 31. Mai 2017 (CEST)

Version vom 31. Mai 2017, 16:34 Uhr

Prüfen Sie, welche der folgenden Mengen identisch sind und welche Teilmengenbeziehungen bestehen. Stellen Sie die Teilmengenbeziehungen in einem Venn.Diagramm dar.

M_1: Menge aller gleichschenkligen Dreiecke

M_2: Menge aller gleichseitigen Dreiecke

M_3: Menge aller gleichwinkligen Dreiecke

M1 c M2 und M1 c M3 (da nicht alle Winkel und Seiten gleich sind) M3 = M2 (da wenn alle Winkel gleich sind auch alle Seiten automatisch gleich sind)

Hallo Kissa052,
deine Aussagen bezüglich den Winkel und Seiten der Dreiecke ist richtig ;)
Du hast nur das Teilmengenzeichen falsch herum gesetzt.  M_2 \subset M_1 (sprich: Menge  M_2 ist eine (echte) Teilmenge von Menge  M_1 , also es gibt weniger gleichseitige, als gleichschenklige Dreiecke, jedoch ist jedes gleichseitige Dreieck auch gleichschenklig, aber nicht umgekehrt) sowie  M_3 \subset M_1 . Deine Aussage  M_3=M_2 stimmt. Setzen wir alles Zusammen erhalten wir:  M_2 = M_3 \subset M_1 .

--Tutor: Alex (Diskussion) 17:34, 31. Mai 2017 (CEST)