Gruppendefinition (kurz): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Linkseins = Rechtseins)
(Satz 2)
Zeile 27: Zeile 27:
 
=Linkseins gleich Rechtseins=
 
=Linkseins gleich Rechtseins=
 
==Satz 2==
 
==Satz 2==
Es sei <math>[G, \otimes]</math> eine Gruppe. <math>\forall a \in G: a \otimes a_1^{-1} = e \land a \otimes a_2^{-1} = e \Rightarrow a_2^{-1}= a_1^{-1}</math>
+
Es sei <math>[G, \otimes]</math> eine Gruppe. Wenn <math>e \in G</math> von links multipliziert Einselement von <math>[G, \otimes]</math> ist, dann ist <math>e</math> auch von rechts multipliziert Einselement von <math>G</math>.
 +
==Beweis von Satz 2==
 +
Es sei <math>[G, \otimes]</math> Gruppe. Es gelte ferner für das Element <math>e \in G</math> die folgende Eigenschaft: <math>\forall g \in G: e \otimes g = g</math>.<br />
 +
Wir haben zu zeigen, dass jetzt auch <math>g \otimes e = g</math> für alle <math>g</math> aus <math>G</math> gilt.
 
<!--- Was hier drunter steht muss stehen bleiben --->
 
<!--- Was hier drunter steht muss stehen bleiben --->
 
|}
 
|}
 
</div>
 
</div>
 
[[Kategorie:Algebra]]
 
[[Kategorie:Algebra]]

Version vom 25. November 2017, 12:03 Uhr

Inhaltsverzeichnis

Linksinvers gleich Rechtsinvers

Satz 1

Es sei [G, \odot] eine Gruppe.
\forall a \in G: a \odot b = e \land c \odot a = e \Rightarrow b=c

Beweis von Satz 1

Es sei b das Linksinverse bzgl. \odot von a.
Wir multiplizieren b von rechts mit a:

(I) a \odot b = e \odot a \odot b (Wir haben a mit b von rechts multipliziert
(II) a \odot b = (b^{-1} \odot b)\odot a \odot b (Auch b hat ein Linksinverses b^{-1}
(III) a \odot b = b^{-1} \odot (b\odot a) \odot b (Assoziativität)
(IV) a \odot b = b^{-1} \odot e \odot b (b ist das Linksinverse von a)
(V) a \odot b = b^{-1} \odot b (Eigenschaften des Einselements)
(VI) a \odot b = e (b^{-1} ist das Linksinverse von b

Mit Gleichung (VI) haben wir gezeigt, dass das Linksinverse von a auch Rechtsinverses von a ist.

Linkseins gleich Rechtseins

Satz 2

Es sei [G, \otimes] eine Gruppe. Wenn e \in G von links multipliziert Einselement von [G, \otimes] ist, dann ist e auch von rechts multipliziert Einselement von G.

Beweis von Satz 2

Es sei [G, \otimes] Gruppe. Es gelte ferner für das Element e \in G die folgende Eigenschaft: \forall g \in G: e \otimes g = g.
Wir haben zu zeigen, dass jetzt auch g \otimes e = g für alle g aus G gilt.