Übungsaufgaben zur Algebra, Serie 4 SoSe 2018: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 4.1)
(Aufgabe 4.2)
Zeile 9: Zeile 9:
  
 
=Aufgabe 4.2=
 
=Aufgabe 4.2=
 
+
Die Gleichung <math>a_2x+b_2y=c_2</math> ist eine Linearkombination der Gleichung <math>a_1x+b_1y=c_1</math>, wenn eine Zahl <math>\lambda \in \mathbb{R}</math> derart e
 +
dass <br />
 +
<math>\begin{matrix} \lambda a_1 &=& a_2 \\ \lambda b_1 &=& b_2 \\ \lambda c_1 &=& c_2 \end{matrix}</math> <br />
 +
gilt.
  
 
=Aufgabe 4.3=
 
=Aufgabe 4.3=

Version vom 12. Mai 2018, 14:25 Uhr

Inhaltsverzeichnis

Aufgabe 4.1

Wir betrachten auf der Menge der natürlichen Zahlen, die Relationen Teiler und echter Teiler.
(a) Eine dieser Relationen ist keine Äquivalenzrelationen. Welche? Beweisen Sie Ihre Aussage.
(b) Beweisen Sie für die andere Relation, dass sie eine Äquivalanzrelation ist.

Aufgabe 4.2

Die Gleichung a_2x+b_2y=c_2 ist eine Linearkombination der Gleichung a_1x+b_1y=c_1, wenn eine Zahl \lambda \in \mathbb{R} derart e dass
\begin{matrix} \lambda a_1 &=& a_2 \\ \lambda b_1 &=& b_2 \\ \lambda c_1 &=& c_2 \end{matrix}
gilt.

Aufgabe 4.3

Aufgabe 4.4

Aufgabe 4.5

Aufgabe 4.6

Aufgabe 4.7

Aufgabe 4.8

Aufgabe 4.9

Aufgabe 4.10