Lösung von Aufgabe 2.7 SoSe 2018: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Teilaufgabe a))
(Teilaufgabe b))
Zeile 18: Zeile 18:
  
 
==Teilaufgabe b)==
 
==Teilaufgabe b)==
 +
===Voraussetzung===
 +
<math>\beta'</math> ist Außenwinkel von <math> \overline{ABC} </math>.
 +
===Behauptung===
 +
<math>\vert \beta' \vert = \vert \alpha \vert + \vert \gamma \vert </math>
 
<!--- Was hier drunter steht muss stehen bleiben --->
 
<!--- Was hier drunter steht muss stehen bleiben --->
 
|}
 
|}
 
</div>
 
</div>
 
[[Kategorie:Einführung_S]]
 
[[Kategorie:Einführung_S]]

Version vom 22. Mai 2018, 11:35 Uhr

Inhaltsverzeichnis

Aufgabe 2.6 SoSe 2018

Wir setzen den Innenwinkelsatz für Dreiecke und den Nebenwinkelsatz als bewiesen voraus.
Satz: (starker Außenwinkelsatz)

Jeder Außenwinkel eines Dreiecks ist so groß wie die Summe der Größen der beiden nicht anliegenden Innenwinkel.

a) Formulieren Sie den starken Außenwinkelatz in Wenn-Dann-Form.
b) Formulieren Sie die Voraussetzung und die Behauptung des starken Außenwinkelsatzes unter Verwendung der Bezeichnungen in der folgenden Skizze:

Skizze für den Beweis des starken Außenwinkelsatzes
c) Beweisen Sie den starken Außenwinkelsatz.

Lösung

Teilaufgabe a)

Wenn ein Winkel  \beta ' ein Außenwinkel eines Dreiecks  \overline{ABC} ist, dann ist seine Größe gleich der Summe der Größen der beiden Innenwinkel von  \overline{ABC}, die keine Nebenwinkel zu  \beta ' sind.

Teilaufgabe b)

Voraussetzung

\beta' ist Außenwinkel von  \overline{ABC} .

Behauptung

\vert \beta' \vert = \vert \alpha \vert + \vert \gamma \vert