Lösung von Aufgabe 14.2P (WS 18/19): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 14.2)
 
Zeile 1: Zeile 1:
 
==Aufgabe 14.2==
 
==Aufgabe 14.2==
 
Beweisen Sie den schwachen Außenwinkelsatz. Hinweis: Sie dürfen sich auf Aufgabe 14.1 beziehen.
 
Beweisen Sie den schwachen Außenwinkelsatz. Hinweis: Sie dürfen sich auf Aufgabe 14.1 beziehen.
 +
<br />
 +
<br />
 +
Vor: <math>\overline{ABC}</math> mit den Winkeln α,β,γ; Beh: |α<sub>Außen</sub>| > |β| und |α<sub>Außen</sub>| > |γ|<br />
 +
<br />
 +
1.) |α<sub>Außen</sub>| = |β| + |γ| '''- Starker Außenwinkelsatz'''<br />
 +
2.) |β| ≠ 0 ≠ |γ| '''- Eigenschaft Dreieck; Logik (Ein Dreieckswinkel kann nicht den Betrag 0 haben)''' <br />
 +
3.) |α<sub>Außen</sub>| > |β| und |α<sub>Außen</sub>| > |γ| '''- 1.); 2.)'''<br />
 +
Die Behauptung ist gültig. --[[Benutzer:CIG UA|CIG UA]] ([[Benutzer Diskussion:CIG UA|Diskussion]]) 20:34, 29. Jan. 2019 (CET)<br />
 
<br />
 
<br />
  
  
 
[[Kategorie:Geo_P]]
 
[[Kategorie:Geo_P]]

Aktuelle Version vom 29. Januar 2019, 20:34 Uhr

Aufgabe 14.2

Beweisen Sie den schwachen Außenwinkelsatz. Hinweis: Sie dürfen sich auf Aufgabe 14.1 beziehen.

Vor: \overline{ABC} mit den Winkeln α,β,γ; Beh: |αAußen| > |β| und |αAußen| > |γ|

1.) |αAußen| = |β| + |γ| - Starker Außenwinkelsatz
2.) |β| ≠ 0 ≠ |γ| - Eigenschaft Dreieck; Logik (Ein Dreieckswinkel kann nicht den Betrag 0 haben)
3.) |αAußen| > |β| und |αAußen| > |γ| - 1.); 2.)
Die Behauptung ist gültig. --CIG UA (Diskussion) 20:34, 29. Jan. 2019 (CET)