GeometrieUndUnterrichtSS2019 03: Unterschied zwischen den Versionen
Zeile 124: | Zeile 124: | ||
|| | || | ||
Beispiel Parallelstreifen: | Beispiel Parallelstreifen: | ||
+ | |||
1. Visualisation: Vierecke werden gelegt und dadurch eine ganzheitliche Erfassung von dem geometrischen Objekt des Vierecks angeregt. Basale Kenntnisse (4 Ecken, 4 Seiten,..) werden aktiviert. | 1. Visualisation: Vierecke werden gelegt und dadurch eine ganzheitliche Erfassung von dem geometrischen Objekt des Vierecks angeregt. Basale Kenntnisse (4 Ecken, 4 Seiten,..) werden aktiviert. | ||
Version vom 15. Mai 2019, 14:58 Uhr
Inhaltsverzeichnis |
Vorbereitungsauftrag
Entwerfen Sie eine Unterrichtsaktivität für die Einführung bzw. einführenden Erarbeitung des Begriffs Parallelogramm. Ziel der Unterrichtsaktivität ist die Kenntnis der Begriffsdefinition. Gehen Sie von einer generischen (Real-)Schulklasse der sechsten Jahrgangsstufe aus. Gehen Sie davon aus, dass die Schüler*innen aus der fünften Jahrgangsstufe bereits in der Lage sind, 'Parallelität' im Kontext paralleler Geraden und Vierecke, Quadrate und Rechtecke identifizieren können. Beachten Sie auch den gemeinsamer Bildungsplan für die Sekundarstufe I des Landes Baden-Württemberg.
In der Didaktischen Werkstatt Mathematik und Informatik der PH Heidelberg finden Sie u.a. eine Sammlung von verschiedenen Schulbüchern, die Sie gerne zur Inspiration nutzen können.
Sitzungsmaterialien
- Begleitfolien der Seminarsitzung vom 10.05.2019
- Screenshot „Das Problem der Apfelbauern“ (Mittelsenkrechte als Äquidistanzkurve)
Dokumentation der Sitzung
Zusammenfassung und Bezug zu den Bildungsstandards
Inhaltlicher Input
Arbeitsphase
Zusatzmaterial
Als zusätzliche Übungsgelegenheit für die Unterstützung der Begriffslernens mit Blick auf das Operative Prinzip finden Sie die Aktivität „Schwarze Kisten am Dreieck“ in der GeoGebra.org-Gruppe des Seminars. Entwerfen Sie hierzu ein Arbeitsblatt zur angeleiteten Exploration des Applets. Versuchen Sie dabei explizite Handlungs-, Beobachtungs- und hypothesengenerierende Anweisungen zu geben.
Nachbereitungsauftrag
Entwerfen Sie eine Prüfungsfrage bzw. ein kurzes Prüfungsgespräch zu den Sitzungen zum Begriffslernen (I+II). Ihre Frage sollte dabei nicht nur bloße Wissensabfrage sein, sondern auch Anwendungen, Begründungen oder Diskussionen erfordern. (Sollte Ihnen doch nur Aufgaben zur bloßen Wissensabfrage einfallen, entwerfen Sie drei Prüfungsfragen.)
- Formulieren Sie Ihre Prüfungsfrage bzw. den Anlass für das Prüfungsgespräch in der Aufgabenstellung-Spalte.
- Beschreiben Sie ausführlich, wie mögliche (richtige) Antworten auf Ihre Frage aussehen könnten bzw. welche Aspekte in einem Prüfungsgespräch zu dieser Frage angesprochen werden sollten. Tragen Sie dies entsprechend in die Erwartungshorizont-Spalte ein.
- Erläutern Sie kurz, warum Sie diese Aufgabe einen zentralen Aspekt der Sitzung abdeckt und welche Anforderung an Wissen/Kompetenzen die Aufgabe fordert.
Unter den übergreifenden Literaturhinweise sind insbesondere relevant:
- Kapitel 5 „Begriffslernen und Begriffslehren“ in Weigand et. al. (2018). „Didaktik der Geometrie für die Sekundarstufe I“
- Diverse Ausgangspunkte zu Diskussionen über Grundvorstellungen und Darstellungen sind in den ersten Kapiteln von Ludwig et. al. (2015). „Geometrie zwischen Grundbegriffen und Grundvorstellungen“ zu finden.
- Kapitel 4 in Kaenders & Schmitt (2014). „Mit GeoGebra mehr Mathematik verstehen“ bietet Ausgangspunkte zur Diskussion über das Operative Prinzip. Genauso Wittmann (1985): „Objekte-Operationen-Wirkungen: Das operative Prinzip in der Mathematikdidaktik“ In Mathematik lehren.
Mögliche Inspiration können Sie gerne auch weiteren Quellen entnehmen. Zum Beispiel:
- Mason (2009). „The van Hiele levels of geometric understanding.“ In Colección Digital Eudoxus 1.2.
Ergebnisse der Nachbereitung
Tragen Sie die Ergebnisse Ihrer Nachbereitung in die folgende Tabelle ein.
Aufgabenstellung | Erwartungshorizont | Diskussion |
---|---|---|
Aus algebraischer Sicht ist die folgende Gleichungskette offensichtlich wahr (Assoziativgesetz für Brüche): .
|
Die Symbole lassen sich als Formel für die Berechnung des Flächeninhalt eines Dreiecks interpretieren. In ihnen sind sogar verschiedene Beweisideen der Berechnungsformel enthalten, die sich aus der Berechnungsformel des Flächeninhalts des Rechtecks herleiten lassen: Der Flächeninhalt ist das Produkt der Hälfte der Grundseite mit der Höhe bzw. die Hälfte des Produkts aus Grundseite und Höhe bzw. das Produkt der Grundseite mit der Hälfte der Höhe. Anfertigung von Skizzen zu den jeweiligen Interpretationen. Der geometrische Zugang unterstützt das Aufbauen von Grundvorstellungen zur Bruchrechnung (u.a. Multiplikation Zahl-mal-Bruch und Bruch-mal-Zahl) und zum Termbegriff (u.a. Kalkülvorstellung, Gegenstandsvorstellung, Terme als „Bauplan“?). Aufzählung der Aspekte von Grundvorstellungen. Die Diskussion der Gleichungskette aus geometrischer Perspektive verlangt mindestens ein integriertes Begriffsverständnis von Viereck und Dreieck (van-Hiele: 3 Apstraction). Beziehungen zwischen den Figuren Dreieck und Viereck müssen erkannt werden (Begriffsnetz). Schlussfolgerungen finden vermutlich auf informeller Ebene statt (etwa Zerlegungen und Verschiebungen vs. formaler Nachweis der Kongruenz von Teildreiecken und Flächengleichheit kongruenter Dreiecke). Es werden u.a. die folgenden geometrischen Konzepte angesprochen: Strecke, Rechteck, Dreieck, Streckenlänge, Flächeninhalt, Zerlegungsgleichkeit, Translationsinvarianz von Streckenlänge und Flächeninhalt. |
Die Aufgabe bietet Anlass, das Wissen zu folgenden Inhalten abzufragen: Grundvorstellungen, Stufen des Begriffserwerbs (van-Hiele-Modell). Darüber hinaus wird die Anwendung des Stufenmodells gefordert und es ist eine Begründung für die Stufenzuteilung nötig. |
Betrachten Sie die folgende Situation: Für seine Mathematikhausaufgaben dividiert Lukas die Zahl 3 durch 1/3. Er wendet die Rechenregeln zur Bruch-Division richtig an und erhält das Ergebnis 9. Lukas fragt sich: „Warum kann das Ergebnis der Division größer sein als der Dividend?“ 1. Wie erklären Sie sich Lukas‘ Denkfehler? Beziehen Sie das Konzept der Grundvorstellungen in die Beantwortung ein. 2. Mit welchem veranschaulichenden Beispiel könnte diesem Denkfehler entgegen gewirkt werden? 3. Könnte man Lukas den Sachverhalt auch anhand von geometrischen Figuren erklären? |
1. Das Problem zeigt, wie wichtig neben den Rechenverfahren auch inhaltliche Vorstellungen mathematischer Inhalte, wie z.B. der Division, sind. Diese inhaltlichen Vorstellungen werden in der Mathematikdidaktik als Grundvorstellungen bezeichnet. Sie beschreiben die möglichst konkrete, inhaltliche ‚Interpretation‘ von mathematischen Objekten und Sachverhalten und sollen dabei helfen, ein tieferes Verständnis der mathematischen Verfahrensweisen zu erhalten. Lukas verfügt nicht über ausreichende Grundvorstellungen der Division durch Brüche, weil er auf die Vorstellung der Division als ‚Verteilen‘ fixiert ist. Würde er sich stattdessen die Frage stellen, wie oft 1/3 in 3 ‚passt‘, und die Division damit als Frage des richtigen Aufteilens interpretieren, wäre sein Vorstellungsproblem gelöst. 2. Um Lukas‘ Denkfehler vorzubeugen, müsste bei den SuS die Grundvorstellung der Division als ‚Aufteilen‘-Operation geweckt werden. Zur Veranschaulichung des Sachverhaltes eignet sich beispielsweise die folgende Problemstellung: „3 Liter Apfelsaft sind in 1/3-l-Flaschen umzufüllen. Wie viele Flaschen werden hierfür benötigt?“ 3. Die folgende Möglichkeit bietet sich dazu an, Lukas den Sachverhalt bzw. die Grundvorstellung der Division als ‚Aufteilen‘-Operation anhand von geometrischen Figuren zu vermitteln: Gegeben seien 3 identische, geometrische Figuren (z.B. Kreise, Rechtecke, Quadrate), die von den SuS in jeweils 3 gleich große Teile zerlegt werden sollen. Anschließend kann gezählt werden, wie viele ‚Drittel‘ in die 3 Figuren 'passen'. |
Die Aufgabe eignet sich dazu, das didaktische Konzept der 'Grundvorstellungen' anwendungsorientiert abzufragen. |
Situationen Einführung gleichseitige und gleichschenklige Dreiecke über AB mit 12 bis 16 Bildern entsprechender Dreiecke und dem Arbeitsauftrag mithilfe eines Lineals die Bilder in zwei Kategorien einzuteilen. Fragen: 1. Welche Art von Begriffserarbeitung wurde hier gewählt und wieso? Gibt es Kritik an dieser Art? 2. Ist diese Art typisch bzw. geeignet um in der Sek. I einen Begriff einzuführen? 3. Welche Stufe den van-Hiele-Modell wird mit dieser Begriffseinführung angesprochen? |
1. Begriffserarbeitung durch Abstraktion von gegebenen Objekten. Begriffsbildung wird als Klassenbildung verstanden anhand der charakteristischen Merkmale der Objekte (2 oder 3 gleich lange Seiten). Der Arbeitsauftrag „sortiere die Figuren nach ihrer Form“ ist typisch für diese Art der Begriffserarbeitung. Kritik: Überbetonung Unterschiede, hauptsächlich bildliche Vorstellungen 2. Typisch für Sek. 1, da nur Konstruktiv-operative Begriffsbildung oder Begriffsbildung durch Abstraktion zentral sind. 3. Analyse- Stufe, da es um die Klassifizierung von Dreiecke und dem Erkennen und Beschreiben von deren Eigenschaften geht. Diese Eigenschaften begründen Klassifizierung. Inhaltliches Begriffsverständnis, da noch keine Beziehung zwischen Eigenschaften hergestellt wird (vgl. Abstraktion). |
Es werden die im Seminar besprochenen Konzepte des Begriffslernens und der Begriffserarbeitung angesprochen und abgefragt. |
Betrachten Sie die Einführung des Begriffs eines Parallelogramms. Suchen Sie sich einen möglichen Einstieg einer Unterrichtsstunde aus (z.B. Parallelstreifen, Arbeitsblatt mit verschiedenen Vierecken,…), in welcher der Begriff des Parallelogramms eingeführt werden soll und beschreiben Sie anhand des Van-Hiele Modells den schrittweisen Begriffslernprozess in den entsprechenden 5 Phasen. |
Beispiel Parallelstreifen: 1. Visualisation: Vierecke werden gelegt und dadurch eine ganzheitliche Erfassung von dem geometrischen Objekt des Vierecks angeregt. Basale Kenntnisse (4 Ecken, 4 Seiten,..) werden aktiviert. 2. Analysis: Spezielle Eigenschaften (verschiedene Winkelgrößen, Seitenlängen,..) werden erkannt und beschrieben. 3. Abstraction: Klassifizierungen (Rechteck, Quadrat, Parallelogramm) werden verstanden und mathematische Definitionen der einzelnen Begriffe herausgearbeitet. 4. Deduction: Geometrische Theorien und Eigenschaften der speziellen Kategorien Quadrat, Rechteck, Parallelogramm werden erkannt und Beziehungen zwischen den Begriffen werden schlussgefolgert. 5. Rigor: wird in der Schule eher weniger praktiziert. Das Verständnis von Beweisen und anspruchsvollen Sätzen ist in der Schule nicht zwingend gegeben. |
Durch diese Aufgabe wird das Van-Hiele Modell wiederholt und der Prozess des Begriffslernens anhand des Beispiels eines Parallelogramms nachvollzogen. Eigenschaften und Beziehungen geometrischer Objekte werden gefordert und man versetzt sich in eine konkrete Unterrichtseinheit. |
Literaturhinweise
- Wittmann (1985): „Objekte-Operationen-Wirkungen: Das operative Prinzip in der Mathematikdidaktik“ In Mathematik lehren.
- Aebli (1985): „Das Operative Prinzip“ In Mathematik lehren. (Zweiter Teil des PDFs)
- Schwank (2003): „Einführung in prädikatives und funktionales Denken“ In ZDM Mathematics Education