Lösung von Aufgabe 4.1 (WS 21 22): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
 
Zeile 1: Zeile 1:
 
Der Basiswinkelsatz lautet: Im gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.<br />
 
Der Basiswinkelsatz lautet: Im gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.<br />
 
a) Wie lautet die Umkehrung des Basiswinkelsatzes?<br />
 
a) Wie lautet die Umkehrung des Basiswinkelsatzes?<br />
Sind Basiswinkel in einem Dreieck kongruent zueinander, so ist es gleichschenklig--[[Benutzer:Die GeFRYten|Die GeFRYten]] ([[Benutzer Diskussion:Die GeFRYten|Diskussion]]) 12:24, 24. Nov. 2021 (CET)
+
Sind Basiswinkel in einem Dreieck kongruent zueinander, so ist es gleichschenklig.--[[Benutzer:Die GeFRYten|Die GeFRYten]] ([[Benutzer Diskussion:Die GeFRYten|Diskussion]]) 12:24, 24. Nov. 2021 (CET)
  
 
b) Fassen Sie den Basiswinkelsatz und seine Umkehrung zu einem Satz zusammen.
 
b) Fassen Sie den Basiswinkelsatz und seine Umkehrung zu einem Satz zusammen.

Aktuelle Version vom 24. November 2021, 12:25 Uhr

Der Basiswinkelsatz lautet: Im gleichschenkligen Dreieck sind die Basiswinkel kongruent zueinander.
a) Wie lautet die Umkehrung des Basiswinkelsatzes?
Sind Basiswinkel in einem Dreieck kongruent zueinander, so ist es gleichschenklig.--Die GeFRYten (Diskussion) 12:24, 24. Nov. 2021 (CET)

b) Fassen Sie den Basiswinkelsatz und seine Umkehrung zu einem Satz zusammen.