Lösung von Aufgabe 5.1: Unterschied zwischen den Versionen
Zeile 12: | Zeile 12: | ||
b) <u>Annahme</u>: Die Gerade g schneidet nicht die Strecke AB und die Strecke AC.--[[Benutzer:Engel82|Engel82]] 23:44, 10. Nov. 2010 (UTC) | b) <u>Annahme</u>: Die Gerade g schneidet nicht die Strecke AB und die Strecke AC.--[[Benutzer:Engel82|Engel82]] 23:44, 10. Nov. 2010 (UTC) | ||
+ | [[Category:Einführung_Geometrie]] |
Version vom 23. November 2010, 15:48 Uhr
Satz: Gegeben sei ein Dreieck in einer Ebene E und eine Gerade g in dieser Ebene, die keine der drei Punkte A, B und C enthält.
Wenn g die Strecke schneidet, so schneidet sie auch entweder die Strecke oder die Strecke .
a) Wie lautet die Kontraposition dieser Implikation?
b) Wie lautet die Annahme, wenn Sie diese Implikation durch einen Widerspruch beweisen möchten?.
a) Vor: Die Gerade g schneidet die Strecke BC
Beh: so schneidet g entweder die Strecke AB oder AC
Kontraposition: Wenn g die Strecke AB und die Strecke AC nicht schneidet, so schneidet sie auch nicht die Strecke BC
Wenn g weder die Strecke AB noch die Strecke AC schneidet oder beide Strecken schneidet, dann schneidet sie auch nicht die Strecke BC--TAB 14:11, 19. Nov. 2010 (UTC)
Hier fehlt nochj was (wegen entweder oder)--*m.g.* 12:52, 19. Nov. 2010 (UTC)
b) Annahme: Die Gerade g schneidet nicht die Strecke AB und die Strecke AC.--Engel82 23:44, 10. Nov. 2010 (UTC)