Der schwache Außenwinkelsatz (WS10/11): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: ===== Definition VIII.1 (Außenwinkel eines Dreiecks): ===== Gegeben sei ein Dreieck <math>\overline {ABC}</math>. Alle Nebenwinkel der Innenwinkel des Dreiecks <math>...)
 
 
Zeile 46: Zeile 46:
  
 
Übungsaufgabe
 
Übungsaufgabe
 +
 +
[[Category:Einführung_Geometrie]]

Aktuelle Version vom 13. Januar 2011, 09:56 Uhr

Inhaltsverzeichnis

Definition VIII.1 (Außenwinkel eines Dreiecks):

Gegeben sei ein Dreieck \overline {ABC}. Alle Nebenwinkel der Innenwinkel des Dreiecks \overline {ABC} heißen Außenwinkel des Dreiecks \overline {ABC}.


schwacher Außenwinkelsatz?

In der Vorlesung wurde angedeutet, dass es im Rahmen der absoluten Geometrie nicht möglich ist, den Satz über die Summe der Größen der Innenwinkel eines Dreiecks zu beweisen. Wenn es richtig ist, was in der Vorlesung gesagt wurde, dann dürfte es in der absoluten Geometrie auch nicht möglich sein, den sogenannten starken Außenwinkelsatz zu beweisen. Die folgende Applikation demonstriert den starken Außenwinkelsatz:





Egal, wie wir unser Dreieck \overline{ABC} wählen, es gilt immer \ | \beta '| = | \alpha | + | \gamma |.


Allgemeiner formuliert:
Für jedes Dreieck gilt: Die Größe eines jeden Außenwinkels ist immer gleich der Summe der Größen der beiden Innenwinkel des Dreiecks, die zu dem jeweiligen Außenwinkel keine Nebenwinkel sind.

Wie bereits erwähnt, gilt der starke Außenwinkelsatz im Rahmen der absoluten Geometrie nicht. Es gilt jedoch der sogenannte schwache Außenwinkelsatz. Dieser ist selbstverständlich im starken Außenwinkelsatz aufgehoben.

Satz VIII.1: (schwacher Außenwinkelsatz)
Die Größe eines jeden Außenwinkels eines Dreiecks ist jeweils größer als die Größe eines jeden Innenwinkels dieses Dreiecks, der kein Nebenwinkel zu dem gewählten Außenwinkel des Dreiecks ist.

Für den Beweis des schwachen Außenwinkelsatzes formulieren wir zunächst ein Lemma.

Lemma 2
Wenn ein Punkt \ P im Inneren des Winkels  \angle ASB liegt, dann liegt der gesamte Strahl \ SP^+ im Inneren des Winkels \angle ASB .

Hinsichtlich des Beweises von Lemma 2 verweisen wir auf das alte Skript (Geschichten aus dem Inneren).

Beweis von Satz VIII.1
Hilfskonstruktion

Der letztendliche Beweis

Es bleibt zu zeigen: \ P \in \operatorname{I} \left( \beta^' \right), wobei wir in diesem Fall das offene Innere von \ \beta^' meinen.

Ziehen Sie an dem Punkt \ P und versuchen Sie, den Beweis nachzuvollziehen.



Unmittelbare Folgerungen aus dem schwachen Außenwinkelsatz

Korollar 1 zum schwachen Außenwinkelsatz
In jedem Dreieck sind mindestens zwei Innenwinkel spitze Winkel.

Übungsaufgabe

Korollar 2 zum schwachen Außenwinkelsatz
Die Summe der Größen zweier Innenwinkel eines Dreiecks ist stets kleiner als 180.

Übungsaufgabe