Lösung von Aufg. 13.3: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 2: Zeile 2:
  
 
<u>Vor</u>: <math>P \in w</math>, , <math>\angle ASP</math> <math>\cong</math><math>\angle PSB</math><br />  
 
<u>Vor</u>: <math>P \in w</math>, , <math>\angle ASP</math> <math>\cong</math><math>\angle PSB</math><br />  
<u>Beh:</u> <math>\overline {AP}</math> <math>\cong</math><math>\overline {BP}</math><br />
+
<u>Beh:</u>P hat sowohl zum Strahl p als auch zum Strahl q ein und denselben Abstand. Und in Schritt zwei werden dann die Lotfußpunkte festgelegt( <math>\overline {AP}</math> <math>\cong</math><math>\overline {BP}</math><br />)
  
 
1)<math>\angle ASP</math> <math>\cong</math><math>\angle PSB</math> __________________Vor<br />
 
1)<math>\angle ASP</math> <math>\cong</math><math>\angle PSB</math> __________________Vor<br />
Zeile 11: Zeile 11:
 
5)<math>\angle SPA</math><math>\cong</math><math>\angle SPB</math>__________________1), 2) und Innenwinkelsumme im Dreieck<br />
 
5)<math>\angle SPA</math><math>\cong</math><math>\angle SPB</math>__________________1), 2) und Innenwinkelsumme im Dreieck<br />
 
6)<math>\triangle {ASP}</math> <math>\cong</math><math>\triangle {SPB}</math>______________WSW,1), 4),5)<br />
 
6)<math>\triangle {ASP}</math> <math>\cong</math><math>\triangle {SPB}</math>______________WSW,1), 4),5)<br />
7) <math>\overline {AP}</math>= <math>\overline {BP}</math>______________________6)--[[Benutzer:Engel82|Engel82]] 17:22, 25. Jan. 2011 (UTC)  
+
7) <math>\overline {AP}</math><math>\cong</math> <math>\overline {BP}</math>______________________6)--[[Benutzer:Engel82|Engel82]] 17:22, 25. Jan. 2011 (UTC)  
  
  
Zeile 34: Zeile 34:
  
 
************Kannst du die Punkte A und B verwenden um die Winkel zu beschreiben und alles wenn du sie erst in Schritt 2 als Lotfußpunkte festlegst?--[[Benutzer:Einfach ich|Einfach ich]] 10:47, 2. Feb. 2011 (UTC)
 
************Kannst du die Punkte A und B verwenden um die Winkel zu beschreiben und alles wenn du sie erst in Schritt 2 als Lotfußpunkte festlegst?--[[Benutzer:Einfach ich|Einfach ich]] 10:47, 2. Feb. 2011 (UTC)
 +
Wenn man es ganz genau nimmt, müsste man in die Behauptung folgendes schreiben:
 +
P hat sowohl zum Strahl p als auch zum Strahl q ein und denselben Abstand. Und in Schritt zwei werden dann die Lotfußpunkte festgelegt.

Version vom 3. Februar 2011, 10:57 Uhr

Man beweise: Ein Punkt \ P gehört genau dann zur Winkelhalbierenden des Winkels \ \alpha, wenn er zu den Schenkeln von \ \alpha jeweils denselben Abstand hat.

Vor: P \in w, , \angle ASP \cong\angle PSB
Beh:P hat sowohl zum Strahl p als auch zum Strahl q ein und denselben Abstand. Und in Schritt zwei werden dann die Lotfußpunkte festgelegt( \overline {AP} \cong\overline {BP}
)

1)\angle ASP \cong\angle PSB __________________Vor
2) Lote werden durch P auf die jeweiligen Schenkel des Winkels________________Existenz und Eindeutigkeit des Lotes
\angle ASB gefällt
. A und B sind Lotfußpunkte. 3)|\angle {SAP}| =|\angle {SBP}| =90________________2)
4)\overline {SP}= \overline {SP}___________________trivial
5)\angle SPA\cong\angle SPB__________________1), 2) und Innenwinkelsumme im Dreieck
6)\triangle {ASP} \cong\triangle {SPB}______________WSW,1), 4),5)
7) \overline {AP}\cong \overline {BP}______________________6)--Engel82 17:22, 25. Jan. 2011 (UTC)


Vor:\overline {AP} \cong\overline {BP}
Beh: P \in w, \angle ASP \cong\angle PSB

1)\overline {AP}\cong \overline {BP}___________________Vor.
2) Lote werden durch P auf die jeweiligen Schenkel des Winkels________________Existenz und Eindeutigkeit des Lotes
\angle ASB gefällt
. A und B sind Lotfußpunkte. 3)|\angle {SAP}| =|\angle {SBP}| =90_________________2)
4)\overline {SP}\cong \overline {SP}___________________trivial
5)\triangle {SAP} \cong\triangle {SPB}__________________SsW, 1),3),4),Korollar 1 und Satz:der größeren Seite liegt der größere Winkel gegenüber.
6)\angle ASP \cong\angle PSB_________________________5)
7)SP+ ist Winkelhalbierende ____________________6)
P \in w--Engel82 17:33, 25. Jan. 2011 (UTC)

                      • Muss das bei Schritt 5 nicht Dreieck SAP und Dreieck SPB heißen ????! **********************

Stimmt. Danke--Engel82 09:02, 27. Jan. 2011 (UTC)


                        • Kannst du die Punkte A und B verwenden um die Winkel zu beschreiben und alles wenn du sie erst in Schritt 2 als Lotfußpunkte festlegst?--Einfach ich 10:47, 2. Feb. 2011 (UTC)

Wenn man es ganz genau nimmt, müsste man in die Behauptung folgendes schreiben: P hat sowohl zum Strahl p als auch zum Strahl q ein und denselben Abstand. Und in Schritt zwei werden dann die Lotfußpunkte festgelegt.