Lösung von Aufg. 13.3: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 2: Zeile 2:
  
 
<u>Vor</u>: <math>P \in w</math>, , <math>\angle ASP</math> <math>\cong</math><math>\angle PSB</math><br />  
 
<u>Vor</u>: <math>P \in w</math>, , <math>\angle ASP</math> <math>\cong</math><math>\angle PSB</math><br />  
<u>Beh:</u>P hat sowohl zum Strahl p als auch zum Strahl q ein und denselben Abstand. Und in Schritt zwei werden dann die Lotfußpunkte festgelegt( <math>\overline {AP}</math> <math>\cong</math><math>\overline {BP}</math><br />)
+
<u>Beh:</u>P hat sowohl zum Strahl p als auch zum Strahl q ein und denselben Abstand.<br />
 +
( <math>\overline {AP}</math> <math>\cong</math><math>\overline {BP}</math><br />)
  
 
1)<math>\angle ASP</math> <math>\cong</math><math>\angle PSB</math> __________________Vor<br />
 
1)<math>\angle ASP</math> <math>\cong</math><math>\angle PSB</math> __________________Vor<br />

Version vom 3. Februar 2011, 10:58 Uhr

Man beweise: Ein Punkt \ P gehört genau dann zur Winkelhalbierenden des Winkels \ \alpha, wenn er zu den Schenkeln von \ \alpha jeweils denselben Abstand hat.

Vor: P \in w, , \angle ASP \cong\angle PSB
Beh:P hat sowohl zum Strahl p als auch zum Strahl q ein und denselben Abstand.
( \overline {AP} \cong\overline {BP}
)

1)\angle ASP \cong\angle PSB __________________Vor
2) Lote werden durch P auf die jeweiligen Schenkel des Winkels________________Existenz und Eindeutigkeit des Lotes
\angle ASB gefällt
. A und B sind Lotfußpunkte. 3)|\angle {SAP}| =|\angle {SBP}| =90________________2)
4)\overline {SP}= \overline {SP}___________________trivial
5)\angle SPA\cong\angle SPB__________________1), 2) und Innenwinkelsumme im Dreieck
6)\triangle {ASP} \cong\triangle {SPB}______________WSW,1), 4),5)
7) \overline {AP}\cong \overline {BP}______________________6)--Engel82 17:22, 25. Jan. 2011 (UTC)


Vor:\overline {AP} \cong\overline {BP}
Beh: P \in w, \angle ASP \cong\angle PSB

1)\overline {AP}\cong \overline {BP}___________________Vor.
2) Lote werden durch P auf die jeweiligen Schenkel des Winkels________________Existenz und Eindeutigkeit des Lotes
\angle ASB gefällt
. A und B sind Lotfußpunkte. 3)|\angle {SAP}| =|\angle {SBP}| =90_________________2)
4)\overline {SP}\cong \overline {SP}___________________trivial
5)\triangle {SAP} \cong\triangle {SPB}__________________SsW, 1),3),4),Korollar 1 und Satz:der größeren Seite liegt der größere Winkel gegenüber.
6)\angle ASP \cong\angle PSB_________________________5)
7)SP+ ist Winkelhalbierende ____________________6)
P \in w--Engel82 17:33, 25. Jan. 2011 (UTC)

                      • Muss das bei Schritt 5 nicht Dreieck SAP und Dreieck SPB heißen ????! **********************

Stimmt. Danke--Engel82 09:02, 27. Jan. 2011 (UTC)


                        • Kannst du die Punkte A und B verwenden um die Winkel zu beschreiben und alles wenn du sie erst in Schritt 2 als Lotfußpunkte festlegst?--Einfach ich 10:47, 2. Feb. 2011 (UTC)

Wenn man es ganz genau nimmt, müsste man in die Behauptung folgendes schreiben: P hat sowohl zum Strahl p als auch zum Strahl q ein und denselben Abstand. Und in Schritt zwei werden dann die Lotfußpunkte festgelegt.