Serie 01: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Aufgabe 1.3)
(Aufgabe 1.4)
Zeile 22: Zeile 22:
 
|}
 
|}
 
===Aufgabe 1.4===
 
===Aufgabe 1.4===
 +
::Beweisen Sie Satz 1.2
 +
 +
Es seien <math>\beta_1</math> und <math>\beta_2</math> zwei Bewegungen.
 +
 +
zu zeigen:
 +
 +
<math>\beta_2 \circ  \beta_1</math> ist eine Bewegung.

Version vom 18. Oktober 2011, 14:31 Uhr

Inhaltsverzeichnis

Aufgabe 1.1

Definieren Sie für die ebene Geometrie den Begriff Bewegung
(Definition 1.1)

Aufgabe 1.2

Definieren Sie die Begriffe injektiv und surjektiv

Aufgabe 1.3

Ergänzen Sie die folgende Tabelle
Abbildung Umkehrabbildung
x^2, x\ge 0 ...
\sin (x), 0 \le x \ge ...  \arcsin (x)
Drehung um Z mit Drehwinkel  \alpha ...
Spiegelung an der Geraden  s ...

Aufgabe 1.4

Beweisen Sie Satz 1.2

Es seien \beta_1 und \beta_2 zwei Bewegungen.

zu zeigen:

\beta_2 \circ  \beta_1 ist eine Bewegung.