Serie 03: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) |
*m.g.* (Diskussion | Beiträge) (→Aufgabe 3.2) |
||
Zeile 3: | Zeile 3: | ||
Es sei <math>k</math> ein Kreis mit dem Mittelpunkt <math>M</math> und dem Radius <math>r</math>. Ferner sei <math>g</math> eine Gerade, die durch den Mittelpunkt von k geht. Schließlich sei <math>Z</math> der gemeinsame Schnittpunkt der Senkrechten in <math>M</math> auf <math>g</math> mit <math>k</math>. Wir definieren eine Abbildung <math>\varphi</math> von <math>k\setminus_Z</math> auf <math>g</math>: <math>\forall P \in k\setminus_Z: \varphi(P)=ZP \cap g</math>. Ist <math>\varphi</math> fixpunktfrei? | Es sei <math>k</math> ein Kreis mit dem Mittelpunkt <math>M</math> und dem Radius <math>r</math>. Ferner sei <math>g</math> eine Gerade, die durch den Mittelpunkt von k geht. Schließlich sei <math>Z</math> der gemeinsame Schnittpunkt der Senkrechten in <math>M</math> auf <math>g</math> mit <math>k</math>. Wir definieren eine Abbildung <math>\varphi</math> von <math>k\setminus_Z</math> auf <math>g</math>: <math>\forall P \in k\setminus_Z: \varphi(P)=ZP \cap g</math>. Ist <math>\varphi</math> fixpunktfrei? | ||
==Aufgabe 3.2== | ==Aufgabe 3.2== | ||
− | Es sei <math>X=\left\{ (x,0)|x\in \mathbb{R} \right\}</math> | + | Es sei <math>X=\left\{ (x,0)|x\in \mathbb{R} \right\}</math>. Wir definieren auf <math>X</math> die folgende Abbildung <math>\varphi</math>: <math>\forall (x,0) \in X: \varphi((x,0))=(x, \sin^2x</math> |
==Aufgabe 3.1== | ==Aufgabe 3.1== |
Version vom 8. November 2011, 12:55 Uhr
Inhaltsverzeichnis |
Aufgabe 3.1
(alles in ein und derselben Ebene) Es sei ein Kreis mit dem Mittelpunkt und dem Radius . Ferner sei eine Gerade, die durch den Mittelpunkt von k geht. Schließlich sei der gemeinsame Schnittpunkt der Senkrechten in auf mit . Wir definieren eine Abbildung von auf : . Ist fixpunktfrei?
Aufgabe 3.2
Es sei . Wir definieren auf die folgende Abbildung :
Aufgabe 3.1
Beweisen Sie: wenn eine Bewegung zwei verschiedene Fixpunkte und hat, dann hat ist die Gerade eine Fixpunktgerade bezüglich .
Aufgabe 3.2
Beweisen Sie: Wenn drei nicht kollineare Punkte Fixpunkte der Bewegung sind, so ist die identische Abbildung. ==