Lösung von Aufgabe 4: Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 10: Zeile 10:
 
Lösung:
 
Lösung:
 
1. Es seien <math>A</math>, <math>B</math> und <math>C</math> drei Punkte. Wenn <math>A</math>,<math>B</math> und <math>C</math> nicht kollinear sind , dann sind sie paarweise verschieden.
 
1. Es seien <math>A</math>, <math>B</math> und <math>C</math> drei Punkte. Wenn <math>A</math>,<math>B</math> und <math>C</math> nicht kollinear sind , dann sind sie paarweise verschieden.
<br />2. Es seien <math>A</math>, <math>B</math> und <math>C</math> drei Punkte.<br />Annahme: <math>A</math> identisch <math>B</math> o.B.d.A.
+
<br />2. Voraussetzung: Es seien <math>A</math>, <math>B</math> und <math>C</math> drei Punkte mit nkoll(<math>A</math>, <math>B</math>, <math>C</math>).<br />Annahme: <math>A</math> identisch <math>B</math> o.B.d.A.
  
 
{| class="wikitable"  
 
{| class="wikitable"  

Version vom 21. Mai 2010, 11:10 Uhr

Satz I: Je drei nicht kollineare Punkte sind paarweise verschieden.

  1. Wir formulieren Satz I neu und beginnen mit „Es seien A, B und C drei Punkte.“ Ergänzen Sie: „Wenn A,B und C … , dann … .“
  2. Beweisen Sie Satz I indirekt.
  3. Bilden Sie die Kontraposition von Satz I.
  4. Beweisen Sie auch die Kontraposition von Satz I.
  5. Formulieren Sie die Umkehrung von Satz I.
  6. Gilt auch die Umkehrung von Satz I?

Lösung: 1. Es seien A, B und C drei Punkte. Wenn A,B und C nicht kollinear sind , dann sind sie paarweise verschieden.
2. Voraussetzung: Es seien A, B und C drei Punkte mit nkoll(A, B, C).
Annahme: A identisch B o.B.d.A.

Schritt Begründung
1) Durch die Punkte B und C geht genau eine Gerade g.
2) A identisch B => A Element g
3) A Element g => koll(A, B,C)
4) Widerspruch zur Voraussetzung
1) Axiom I/1
2) Identität
3) Definition: (kollinear)

3. Sind drei Punkte nicht paarweise verschieden, so sind sie kollinear.
5. Sind drei Punkte paarweise verschieden, so sind sie nicht kollinear.
6. Nein.