Benutzer:Schnirch: Unterschied zwischen den Versionen
Aus Geometrie-Wiki
Zeile 3: | Zeile 3: | ||
Volumen ''V'' einer Pyramide der Höhe ''h'' und der Schnittfläche <math>f(x)</math> einer Ebene ''F'', die parallel zur Grundfläche ''A'' der Pyramide im Abstand ''x'' zur Spitze der Pyramide steht: <math>V=\int_{0}^{h} f (x)\,dx</math> <br /> | Volumen ''V'' einer Pyramide der Höhe ''h'' und der Schnittfläche <math>f(x)</math> einer Ebene ''F'', die parallel zur Grundfläche ''A'' der Pyramide im Abstand ''x'' zur Spitze der Pyramide steht: <math>V=\int_{0}^{h} f (x)\,dx</math> <br /> | ||
Da die Schnittfläche <math>f(x)</math> an der Stelle x durch eine zentrische Streckung der Grundfläche ''A'' mit dem Faktor <math>\frac{x}{h}</math> entsteht, ist also <math>f(x) =\left( \frac{x}{h}\right) ^{2}\cdot A</math> und damit:<br /><math>V=\frac{A}{h^{2}}\int_{0}^{h} x^{2}\,dx= \frac{A}{h^{2}}\cdot\frac{1}{3}h^{3}=\frac{1}{3}A\cdot h </math>. (Keine Angst, dies ist kein Bestandteil der Veranstaltung sondern einfach nur eine gute Übung mit dem Formeleditor--[[Benutzer:Schnirch|Schnirch]] 12:13, 10. Okt. 2011 (CEST)) | Da die Schnittfläche <math>f(x)</math> an der Stelle x durch eine zentrische Streckung der Grundfläche ''A'' mit dem Faktor <math>\frac{x}{h}</math> entsteht, ist also <math>f(x) =\left( \frac{x}{h}\right) ^{2}\cdot A</math> und damit:<br /><math>V=\frac{A}{h^{2}}\int_{0}^{h} x^{2}\,dx= \frac{A}{h^{2}}\cdot\frac{1}{3}h^{3}=\frac{1}{3}A\cdot h </math>. (Keine Angst, dies ist kein Bestandteil der Veranstaltung sondern einfach nur eine gute Übung mit dem Formeleditor--[[Benutzer:Schnirch|Schnirch]] 12:13, 10. Okt. 2011 (CEST)) | ||
+ | |||
+ | [[Bild:Stifter_29.06.11-0005.jpg]] |
Version vom 18. April 2012, 11:33 Uhr
Die Kukulkan-Pyramide in Chichén Itzá (Mexiko). Erbaut von den Mayas. Wer so was bauen kann, muss sich in Geometrie auskennen!
Volumen V einer Pyramide der Höhe h und der Schnittfläche einer Ebene F, die parallel zur Grundfläche A der Pyramide im Abstand x zur Spitze der Pyramide steht:
Da die Schnittfläche an der Stelle x durch eine zentrische Streckung der Grundfläche A mit dem Faktor
entsteht, ist also
und damit:
. (Keine Angst, dies ist kein Bestandteil der Veranstaltung sondern einfach nur eine gute Übung mit dem Formeleditor--Schnirch 12:13, 10. Okt. 2011 (CEST))