Lösung von Aufgabe 3.1 S (SoSe 12): Unterschied zwischen den Versionen
(→Lösungsvorschlag 2:) |
Hauler (Diskussion | Beiträge) (→Lösungsvorschlag 2:) |
||
Zeile 17: | Zeile 17: | ||
[[Category:Einführung_S]] | [[Category:Einführung_S]] | ||
+ | |||
+ | |||
+ | ===Lösungsvorschlag 3: === | ||
+ | |||
+ | Wenn eine Mittelsenkrechte auf die Strecke <math>\overline{AB}</math> trifft, dann sind die beiden Nebenwinkel rechte Winkel. | ||
+ | |||
+ | Wenn eine Mittelsenkrechte die Strecke <math>\overline{AB}</math> schneidet, dann ist der Schnittpunkt der Mittelpunkt M der Geraden <math>\overline{AB}</math> . --[[Benutzer:Hauler|Hauleri]] 13:10, 6. Mai 2012 (CEST) |
Version vom 6. Mai 2012, 12:10 Uhr
Aufgabe 3.1
Unter einer Konventionaldefinition versteht man eine Definition, die in der Form "Wenn-Dann" formuliert wurde.
Geben Sie zwei prinzipiell verschiedene Konventionaldefinitionen des Begriffs Mittelsenkrechte einer Strecke an.
Wenn eine Gerade g senkrecht auf einer Strecke steht und durch den Mittelpunkt der Strecke verläuft, dann ist g Mittelsenkrechte.--Oz44oz 21:53, 1. Mai 2012 (CEST)
Lösungsvorschlag 2:
Wenn eine Gerade eine Mittelsenkrechte ist, dann halbiert sie eine Strecke und steht dabei senkrecht auf ihr.
Da hier ja nach zwei prinzipiell verchiedenen Konventionaldefinitionen gefragt ist. Meine Frage: Könnte man auch folgendes sagen?????
Wenn eine Gerade eine Mittelsenkrechte ist, dann ist sie die Menge aller Punkte, die von zwei Punkten A und B den gleichen Abstand hat.
Ansonsten fallen mir nämlich nurnoch ähnliche Forumlierungen wie oben ein.--Goliath 17:42, 3. Mai 2012 (CEST)
Lösungsvorschlag 3:
Wenn eine Mittelsenkrechte auf die Strecke trifft, dann sind die beiden Nebenwinkel rechte Winkel.
Wenn eine Mittelsenkrechte die Strecke schneidet, dann ist der Schnittpunkt der Mittelpunkt M der Geraden . --Hauleri 13:10, 6. Mai 2012 (CEST)