Zusatzaufgaben 5 (SoSe 12): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
(Die Seite wurde neu angelegt: „== Aufgabe 1== Beweisen Sie Satz I.5 : Zwei voneinander verschiedene Ebenen haben entweder keinen Punkt oder eine Gerade gemeinsam, auf der alle gemeinsamen Punkt…“) |
|||
| Zeile 9: | Zeile 9: | ||
[[Lösung von Zusatzaufgabe 4.2 (SoSe_12)]] | [[Lösung von Zusatzaufgabe 4.2 (SoSe_12)]] | ||
| + | |||
| + | |||
| + | == Aufgabe 3== | ||
| + | Welche Aussagen sind für beliebige Punkte <math>A, B, C, D, E</math> immer wahr?<br /><br /> | ||
| + | a) <math>\operatorname{nkoll}(A, B, C, D) </math><br /> | ||
| + | b) <math>\operatorname{komp}(A, C, D) </math><br /> | ||
| + | c) <math>\operatorname{koll}(A, E) </math><br /> | ||
| + | d) <math>\operatorname{komp}(A, B) </math><br /> | ||
| + | e) <math>\operatorname{nkomp}(A, B, C, D, E) </math><br /> | ||
| + | f) <math>\operatorname{komp}(A, B, C, D, E) </math><br /> | ||
| + | |||
| + | [[Lösung von Zusatzaufgabe 4.3 (SoSe_12)]] | ||
Version vom 9. Mai 2012, 12:32 Uhr
Aufgabe 1
Beweisen Sie Satz I.5 : Zwei voneinander verschiedene Ebenen haben entweder keinen Punkt oder eine Gerade gemeinsam, auf der alle gemeinsamen Punkte beider Ebenen liegen.
Lösung von Zusatzaufgabe 4.1 (SoSe_12)
Aufgabe 2
Beweisen Sie Satz I.7 : Jede Ebene enthält (wenigstens) drei Punkte.
Lösung von Zusatzaufgabe 4.2 (SoSe_12)
Aufgabe 3
Welche Aussagen sind für beliebige Punkte
immer wahr?
a) 
b) 
c) 
d) 
e) 
f) 

