Lösung von Aufgabe 4.2P (SoSe 12): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
Zeile 12: Zeile 12:
  
 
transitiv : gRh und hRc <math>\Rightarrow</math> gRc
 
transitiv : gRh und hRc <math>\Rightarrow</math> gRc
somit gRh stimmt ja somit sit die Aussage wahr und hRc geht nicht, da kein c definiert ist, somit ist hRc falsch.  Alles in allem ist die wahre Aussage und falsche Aussage immer eine falsche Aussage. Und durch die Implikation ist es egal was hinten raus kommt die Aussage ist wahr. Hoffe konnte es verständlich ausführen.--[[Benutzer:Malilglowka|Malilglowka]] 23:41, 10. Mai 2012 (CEST)
+
somit gRh stimmt ja somit ist die Aussage wahr und hRc geht nicht, da kein c definiert ist, somit ist hRc falsch.  Alles in allem ist die wahre Aussage und falsche Aussage immer eine falsche Aussage (UND-Aussage). Und durch die Implikation ist es egal was hinten raus kommt die Aussage ist wahr (<math>\Rightarrow</math> Aussage). Hoffe konnte es verständlich ausführen.--[[Benutzer:Malilglowka|Malilglowka]] 23:41, 10. Mai 2012 (CEST)
  
  

Version vom 10. Mai 2012, 22:42 Uhr

Untersuchen Sie folgende Relation S auf ihre Eigenschaften:
\ g S h \Leftrightarrow \ g \cap h \neq \lbrace \rbrace

Reflexiv, symmetrisch und transitiv \Leftrightarrow Äquivalenzrelation --Malilglowka 17:29, 10. Mai 2012 (CEST)


reflexiv: würde ich zustimmen, denn eine menge mit sich selbst geschnitten keine leere menge ergibt
symmetrisch: ja, weil das kommutativgesetz gilt (auch g und h haben keine leere menge.
transitiv: würde ich dir nicht zustimmen: wenn g geschnitten mit h keine leere menge hat und h mit i geschnitten keine leere menge, können wir nichts darüber aussagen, ob g und i geschnitten nicht doch eine leere menge haben
- zahlenbeispiel: wenn  g= \lbrace4,5 \rbrace und  h= \lbrace1,4,5 \rbrace und i= \lbrace1 \rbrace , dann haben g geschnitten mit i eine leere menge.
- beispiel aus der geometrie: wenn g eine gerade ist und h schneidet g, dann hätte i, wenn sie zu g parallel ist, zwar auch einen punkt mit h gemeinsam, aber nicht zur parallelen geraden g--Studentin 19:21, 10. Mai 2012 (CEST)

transitiv : gRh und hRc \Rightarrow gRc somit gRh stimmt ja somit ist die Aussage wahr und hRc geht nicht, da kein c definiert ist, somit ist hRc falsch. Alles in allem ist die wahre Aussage und falsche Aussage immer eine falsche Aussage (UND-Aussage). Und durch die Implikation ist es egal was hinten raus kommt die Aussage ist wahr (\Rightarrow Aussage). Hoffe konnte es verständlich ausführen.--Malilglowka 23:41, 10. Mai 2012 (CEST)