Lösung von Aufgabe 4.3P (SoSe 12): Unterschied zwischen den Versionen
Zeile 11: | Zeile 11: | ||
--[[Benutzer:Studentin|Studentin]] 00:38, 11. Mai 2012 (CEST) | --[[Benutzer:Studentin|Studentin]] 00:38, 11. Mai 2012 (CEST) | ||
[[Datei:Dreicke_klasseneinteilung_001.jpg|600px]] | [[Datei:Dreicke_klasseneinteilung_001.jpg|600px]] | ||
+ | |||
+ | |||
+ | Ich sage, dass die Klassifizierung nach Winkeln eine wirkliche Klasseneinteilung ist. --[[Benutzer:Honeydukes|Honeydukes]] 20:08, 12. Mai 2012 (CEST) | ||
+ | |||
[[Category:Einführung_P]] | [[Category:Einführung_P]] |
Aktuelle Version vom 12. Mai 2012, 19:08 Uhr
In der Schule sprechen wir davon, dass wir Dreiecke
a) hinsichtlich der Seitenlängen oder
b) hinsichtlich der Winkelgrößen klassifizieren.
In welchen der beiden Fälle handelt es sich um eine wirkliche Klasseneinteilung? Argumentieren Sie mit Hilfe eines Venn-Diagramms.
Hinsichtlich der Winkel, da man verschiedene Dreiecke, stumpfe, spitz, gleichseitige, gleischschenklige und (allgemeine). Und jeder ist ab einer bestimmten Winkelgröße ein jeweils anderes Dreieck. --Malilglowka 17:31, 10. Mai 2012 (CEST)
hier meine venn-diagramme:
oben winkelgröße (disjunkt, klasseneinteilung), unten seitenlänge
(den strich zur abgrenzung kann man leider nicht so gut sehen)
--Studentin 00:38, 11. Mai 2012 (CEST)
Ich sage, dass die Klassifizierung nach Winkeln eine wirkliche Klasseneinteilung ist. --Honeydukes 20:08, 12. Mai 2012 (CEST)