Beweisidee Aufgabe 4.3.2 S Übung Heckl (SoSe2012): Unterschied zwischen den Versionen

Aus Geometrie-Wiki
Wechseln zu: Navigation, Suche
(Die Seite wurde neu angelegt: „Beweis in zwei Fällen: A_4_3_F_2_16052012.JPG A_4_3_F_2_16052012.JPG“)
 
Zeile 1: Zeile 1:
Beweis in zwei Fällen:
+
== Aufgabe 4.3 ==
 +
Satz I: Je drei nicht kollineare Punkte sind paarweise verschieden.
  
A_4_3_F_2_16052012.JPG
+
# Wir formulieren Satz I neu und beginnen mit „Es seien <math>A</math>, <math>B</math> und <math>C</math> drei Punkte.“ Ergänzen Sie: „Wenn <math>A</math>,<math>B</math> und <math>C</math> {{Schrift_orange|nicht kollinear sind}} , dann {{Schrift_orange|sind sie paarweise verschieden}} .“
 +
# Beweisen Sie Satz I indirekt mit Widerspruch.
  
A_4_3_F_2_16052012.JPG
+
Beweis in zwei Fällen (Reihenfolge der Fälle ist irrelevant) durch Widerspruch:
 +
 
 +
==Fall 1: Annahme: Gelte o. B. d. A. A = B <math>\neq</math> C==
 +
[[Datei:A_4_3_F_1_16052012.JPG|900px]]
 +
 
 +
==Fall 2: Annahme: Gelte A = B = C = A==
 +
[[Datei:A_4_3_F_2_16052012.JPG|900px]]<br /><br />
 +
Kommentar zu Fall 2: Sinnvollerweise schreiben wir zu 3): <math>\exists P \neq A</math>, ansonsten könnte es ja sein, dass P = A ist - diesen Fall schließen wir somit aus! --[[Benutzer:HecklF|Flo60]] 20:33, 16. Mai 2012 (CEST)

Version vom 16. Mai 2012, 19:33 Uhr

Aufgabe 4.3

Satz I: Je drei nicht kollineare Punkte sind paarweise verschieden.

  1. Wir formulieren Satz I neu und beginnen mit „Es seien A, B und C drei Punkte.“ Ergänzen Sie: „Wenn A,B und C nicht kollinear sind , dann sind sie paarweise verschieden .“
  2. Beweisen Sie Satz I indirekt mit Widerspruch.

Beweis in zwei Fällen (Reihenfolge der Fälle ist irrelevant) durch Widerspruch:

Fall 1: Annahme: Gelte o. B. d. A. A = B \neq C

A 4 3 F 1 16052012.JPG

Fall 2: Annahme: Gelte A = B = C = A

A 4 3 F 2 16052012.JPG

Kommentar zu Fall 2: Sinnvollerweise schreiben wir zu 3): \exists P \neq A, ansonsten könnte es ja sein, dass P = A ist - diesen Fall schließen wir somit aus! --Flo60 20:33, 16. Mai 2012 (CEST)