Lösung von Zusatzaufgabe 6.1 S (SoSe 12): Unterschied zwischen den Versionen
Aus Geometrie-Wiki
*m.g.* (Diskussion | Beiträge) (→Bemerkungen M.G.) |
*m.g.* (Diskussion | Beiträge) (→Bemerkungen M.G.) |
||
| Zeile 19: | Zeile 19: | ||
--[[Benutzer:RitterSport|RitterSport]] 20:02, 4. Jun. 2012 (CEST) | --[[Benutzer:RitterSport|RitterSport]] 20:02, 4. Jun. 2012 (CEST) | ||
===Bemerkungen M.G.=== | ===Bemerkungen M.G.=== | ||
| − | Der Beweis ist soweit korrekt aber noch nicht ganz vollständig. | + | Der Beweis ist soweit korrekt aber noch nicht ganz vollständig. Das Axiom I/4 sichert uns nur, dass Ihre Punkte <math>X,Y,Z</math> in der Ebene <math>\varepsilon</math> liegen. Wir sollen aber zeigen, dass alle Punkte der Geraden <math>g</math> in <math>\varepsilon</math> liegen. |
[[Category:Einführung_S]] | [[Category:Einführung_S]] | ||
Version vom 7. Juni 2012, 07:18 Uhr
Zusatzaufgabe 6.1
Es sei
eine Gerade und
ein Punkt, der nicht zu
gehört. Beweisen Sie mittels der Axiome der Inzidenz: Es gibt genau eine Ebene
, die sowohl alle Punkte von
als auch den Punkt
enthält.
Lösungsvorschlag von Quadratisch , Praktisch, Gut
Voraussetzung: Gerade g, Punkt P, P nicht Element von g
Behauptung: Es existiert eine Ebene, die sowohl g als auch P enthält.
| Schritt | Warum darf ich den Schritt machen? |
|---|---|
| (1)Es existiert X,Y.X,Y Element g | I.2 |
| (2)nkoll(X,Y,P) | (1), Vor. |
| (3)Es existiert eine Ebene.X,Y,P Element der Ebene | (2), I.4 |
Durch Axiom I.4 wären Existenz (Zu drei nicht kollinearen Punkten gibt es genau eine Ebene...) und Eindeutigkeit (... genau eine Ebene...) bewiesen.
--RitterSport 20:02, 4. Jun. 2012 (CEST)
Bemerkungen M.G.
Der Beweis ist soweit korrekt aber noch nicht ganz vollständig. Das Axiom I/4 sichert uns nur, dass Ihre Punkte
in der Ebene
liegen. Wir sollen aber zeigen, dass alle Punkte der Geraden
in
liegen.

